Индуктивный датчик положения принцип работы
Индуктивный датчик: принцип работы, схемы подключения, характеристики
В современных станках и высокоточном оборудовании, где важно контролировать положение конструктивных элементов устанавливается индуктивный датчик. Для чего применяется данное устройство, какие разновидности и способы подключения существуют, как оно работает, мы рассмотрим в данной статье.
Назначение
Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.
Сфера применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.
Устройство
Развитие сегмента радиоэлектроники привело не только к совершенствованию первоначальных механизмов, но и к возникновению принципиально новых индуктивных датчиков. В качестве примера рассмотрим один из простейших вариантов (рисунок 1):
Рис. 1. Устройство индуктивного датчика
Как видите на рисунке, в его состав входят:
- магнитопровод или ярмо (1) – предназначен для передачи электромагнитного поля от генератора в зону чувствительности;
- катушка индуктивности (2) – создает переменное электромагнитное поле при протекании электрического тока по виткам;
- объект измерения (3) – металлический якорь, вводимый или перемещаемый в области чувствительности, неметаллические предметы не способные влиять на состояние электромагнитного поля, поэтому они не используются в качестве детектора;
- зазор между объектом измерения и основным магнитопроводом (4) – обеспечивает меру взаимодействия в качестве магнитного диэлектрика, в зависимости от модели датчика и способа перемещения может оставаться неизменным или колебаться в заданном диапазоне;
- генератор (5) — предназначен для генерации электрического напряжения заданной частоты, которое будет создавать переменное магнитное поле в заданной области.
Принцип работы
Принцип действия индуктивного датчика заключается в способности электромагнитного поля изменять свои параметры, в зависимости от значения магнитной проводимости на пути протекания потока. В основе его работы лежит классический вариант катушки, намотанной на сердечник.
Рис. 2. Магнитное поле в состоянии покоя
При протекании электрического тока I по виткам этой катушки генерируется магнитное поле (см. рисунок 2), результирующий вектор магнитной индукции B которого определяется по правилу Правой руки. При движении магнитного поля по сердечнику, ферромагнитный материал обеспечивает максимальную пропускную способность. Но, как только линии магнитной индукции попадают в воздушное пространство, магнитная проводимость существенно ухудшается и часть поля рассеивается.
Рис. 3. Магнитное поле при введении объекта срабатывания
При внесении в область действия поля индуктивного датчика объекта срабатывания (рисунок 3), изготовленного из металла, напряженность линий индукции резко изменяется. В результате чего усиливается поток и меняется его значение, а это, в свою очередь, приводит к изменению электрической величины в цепи катушки за счет явления взаимоиндукции. На практике этот сигнал слишком мал, поэтому для расширения предела измерения индуктивного датчика в их схему включается усилитель.
Расстояние срабатывания и объект воздействия
В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.
Рис. 4. Область и объект срабатывания
Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.
Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:
Рис. 5. Зависимость расстояния срабатывания от материала
На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:
- замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
- размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
- переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.
По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.
Рис. 6. Одинарый и дифференциальный датчик
По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.
Характеристики (параметры)
При выборе индуктивного датчика для решения конкретной задачи руководствуются параметрами цепи, в которых он будет функционировать и основной логикой схемы. Поэтому обязательно проверяется соответствие их параметров:
- напряжение питания – определяет допустимый минимум и максимум разности потенциалов, при которой индуктивный датчик нормально работает;
- минимальный ток срабатывания – наименьшее значение нагрузки, при котором произойдет переключение;
- расстояние срабатывания – допустимый промежуток удаления, при котором будет происходить коммутация;
- индуктивное и магнитное сопротивление – определяет проводимость электрического тока и линий магнитной индукции для конкретной модели;
- поправочный коэффициент – применяется для внесения поправки, в зависимости от дополнительных факторов;
- частота переключений – максимально возможное количество раз коммутации в течении секунды;
- габаритные размеры и способ установки.
Примеры подключения на схемах
Конструктивные особенности индуктивных датчиков определяют количество их выводов и способ дальнейшего подключения. В виду того, что существует четыре наиболее распространенных типа, рассмотрим примеры схем их подключения.
Двухпроводных датчиков индуктивности
Как видите на схеме выше, двухпроводные индуктивные датчики применяются исключительно для непосредственной коммутации нагрузки: контакторов, пускателей, катушек реле в качестве электронного выключателя. Это наиболее простая схема и модель, но работа конкретной модели сильно зависит от параметров подключаемой нагрузки.
Трехпроводных датчиков индуктивности
В трехпроводной схеме присутствует два вывода на питание самого индуктивного датчика, а третий, предназначен для подключения нагрузки к нему. По способу коммутации их подразделяют на PNP и NPN, первый вид коммутирует положительный вывод, откуда и происходит название, второй тип коммутирует отрицательный вывод.
Четырехпроводных датчиков индуктивности
По аналогии с предыдущим датчиком, четырехпроводный также использует два вывода 1 и 3 для получения питания. А вот 2 и 4 вывод используется для подключения нагрузки с той разницей, что коммутация для обеих нагрузок будет противоположной.
Пятипроводных датчиков индуктивности
В пятипроводном индуктивном датчике два вывода применяются для подачи напряжения на чувствительный элемент датчика, в рассматриваемом примере это 1 и 3. Два вывода 2 и 4 подают питание на разные нагрузки, а управляющий вывод 5 позволяет выбирать различные режимы работы и менять логику переключений.
Преимущества и недостатки
В сравнении с другими типами сенсорных устройств индуктивные датчики продолжают занимать весомую нишу, наращивая темпы внедрения в различные сферы промышленности и отрасли народного хозяйства. Такое частое применение объясняется рядом весомых преимуществ:
- высокая надежность за счет простой конструкции и отсутствия подвижных контактов;
- может функционировать как от бытовой сети, так и от специальных генераторов, преобразователей и прочих источников питания;
- способны обеспечивать значительную мощность на выходе — порядка нескольких десятков Ватт;
- характеризуются высокой чувствительностью в зоне измерения.
Но, вместе с тем, существуют и недостатки индуктивных датчиков, которые не позволяют использовать их повсеместно. Среди наиболее существенных минусов являются громоздкие размеры, не позволяющие монтировать их в любых устройствах. Также к недостаткам относится зависимость параметров работы от температурных и других факторов, вносящих поправку на точность.
Принцип работы и подключение индуктивных датчиков
Бесконтактный датчик индуктивности позиционируется как сенсор, способный реагировать на металлические предметы, оказавшиеся в его электромагнитном поле. Благодаря этому свойству индуктивных бесконтактных датчиков удается отслеживать перемещение подвижных частей оборудования и при необходимости отключать двигатель приводного механизма. Для распознавания и анализа изменений магнитного поля в их состав вводится специальный электронный узел, называемый контроллером (компаратором).
- Устройство и принцип действия
- Параметры индуктивных датчиков
- Виды выходов и способы подключения
- Маркировка при подключении
- Цветовая маркировка выводов
- Погрешности датчиков
Устройство и принцип действия

Индуктивный датчик LJ12A3-4-Z/BX (D-12мм)
Индукционные датчики положения, помимо электронного компаратора, содержат в своем составе следующие обязательные компоненты:
- стальной корпус с разъемом для соединительного шнура;
- встроенный чувствительный элемент, регистрирующий на изменения магнитного поля, выполнен в виде стального сердечника с катушкой;
- исполнительный релейный модуль;
- индикатор активации на светодиоде.
Конструкции различных моделей датчиков металла могут иметь некоторые отличия. Они не влияют на сам индукционный датчик, принцип работы его от этого не меняется.

Внутреннее строение индуктивного датчика перемещения
В соответствии с устройством прибора суть его работы описывается следующим образом:
- перемещение металлической части контролируемого объекта приводит к изменению индуктивности чувствительного элемента датчика;
- отклонение объясняется искажением его магнитного поля, следствием которого является изменение параметров электрической схемы и ее активация (светодиод загорается);
- после этого срабатывает электронный модуль и посылает сигнал на исполнительное устройство;
- при поступлении импульса о превышении перемещением допустимого предела выходной (релейный) узел отключает контролируемое оборудование от сети.
Каждая модель имеет собственный показатель чувствительности по перемещению — зазор смещения. Для различных образцов этот параметр варьируется в пределах от 1 микрона до 20 миллиметров.
Параметры индуктивных датчиков

Индуктивные датчики с различными характеристиками
Помимо диапазона срабатывания или чувствительности индуктивный датчик характеризуется следующими рабочими показателями:
- Размер (диаметр) посадочной резьбы, у различных образцов принимающий значения от 8-ми до 30-ти мм.
- Номинальное напряжение питания при температуре плюс 20 градусов, до 90 Вольт постоянного и до 230 Вольт – переменного токов.
- Общая длина корпуса — ее значение зависит от рабочего напряжения.
Последний показатель у различных образцов может варьироваться в значительных пределах.
Для чувствительной или активной зоны прибора вводится еще один параметр, называемый гарантированным пределом срабатывания. Его нижняя граница равна нулю, а верхняя составляет 80 процентов от номинального значения. Этот показатель иногда называют поправочным коэффициентом рабочего зазора.
Не менее важный показатель функциональности чувствительного прибора – количество соединительных проводов в разъеме. Обычно их насчитывается два или три: два питающих и один для активации схемы. Однако возможны варианты подключения, при обустройстве которых используются четыре или пять контактных точек. Подобные образцы кроме двух питающих проводников содержат два выхода на нагрузку. При этом пятый проводник используется для выбора режима работы самого устройства.
Виды выходов и способы подключения
Для оценки действия чувствительного прибора вводится особая характеристика, оцениваемая по состоянию полярности его выходных параметров. В соответствии с общепринятым обозначением полупроводниковых элементов (транзисторов), входящих в состав электронной схемы датчика, эти выходы называются «PNP» и «NPN».
Отличие этих наименований состоит в том, что они обозначают различные полярности (полюса) источника питания чувствительных приборов. PNP транзисторы коммутируют его положительный выход, а NPN – отрицательный. Нагрузкой выходных схем чаще всего является управляющий микропроцессор.

Основные виды подключений разных индуктивных датчиков
В зависимости от схемы управления контроллером индуктивные датчики обозначаются как HO (нормально открытые) или HЗ – с нормально закрытым входом.
Вариант с NPN транзистором – наиболее распространенный способ включения датчика, поскольку согласно стандартным схемным решениям отрицательный провод делается общим для всех компонентов. В этом случае входы микропроцессоров и других контролирующих устройств активируются положительным напряжением.
Маркировка при подключении
На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.
Цветовая маркировка выводов

Перед установкой датчика необходимо сверить данные с инструкцией
На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.
На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.
Стандартный порядок обозначения:
- синий (Blue) всегда означает минусовую шину питания;
- коричневым цветом (Brown) обозначается плюсовой проводник;
- черный (Black) соответствует выходу датчика;
- белый (White) – это дополнительный выход или вход.
Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.
Погрешности датчиков

Бесконтактный индуктивный датчик
Погрешность снятия показаний контрольной системой существенно влияет на работу бесконтактного индуктивного датчика. Ее общая величина набирается из отдельных ошибок измерений по различным показателям: электромагнитным, температурным, аппаратным, магнитной упругости и многим другим.
Электромагнитная погрешность определяется как случайно проявляющаяся величина. Она появляется из-за паразитной ЭДС, наведенной в катушке внешними магнитными полями. В производственных условиях этот компонент создается силовым оборудованием с рабочей частотой 50 Герц. Температурная погрешность – один из важнейших показателей, поскольку работать большинство датчиков могут лишь в определенном диапазоне температур. Она обязательно учитывается при проектировании устройств этого класса.
Погрешность магнитной упругости вводится как показатель нестабильности деформаций сердечника, возникающей в процессе сборки прибора, а также как тот же фактор, но проявляющийся при его работе. Нестабильности внутренних напряжений в магнитопроводе приводит к ошибкам в обработке выходного сигнала. Погрешность, возникающая в самом чувствительном устройстве, проявляется из-за влияния полевой структуры на коэффициент деформации металлических элементов датчика. Кроме того, на ее суммарное значение существенно влияют люфты и зазоры в подвижных частях конструкции.
Погрешность соединительного кабеля набирается из отклонений величины сопротивления его проводных жил в зависимости от температурного фактора, а также как наводки посторонних электромагнитных полей и ЭДС. Тензометрическая погрешность как случайная величина зависит от качества изготовления намоточных элементов датчика (его катушки, в частности). В различных условиях эксплуатации возможно изменение сопротивления обмотки по постоянному току, приводящее к «плаванию» выходного сигнала. Погрешность старения проявляется вследствие износа подвижных элементов датчика, а также изменения электромагнитных свойств магнитопровода.
Проверить реальную величину этого параметра удается только с помощью сверхточных измерительных приборов. При этом обязательно принимаются во внимание кинематические особенности самого датчика. При проектировании и изготовлении чувствительных элементов такая возможность заранее учитывается в его конструкции.
Для индуктивных и емкостных датчиков характерны режимы работы со многими факторами влияния, определяемыми конкретными условиями эксплуатации. Именно поэтому выбор подходящих для данной марки прибора чувствительности и набора выходных параметров является определяющим при его использовании в качестве конечного выключателя.
Индуктивный датчик – устройство, принцип работы, параметры и классификация
Различного типа датчики сегодня широко применяются в промышленности. Без них ни один технологический процесс не обходится. Существует несколько их видов, нас же в этой статье будет интересовать индуктивный датчик. Поэтому разберемся, для чего он необходим, где применяется, его устройство и принцип работы.
Бесконтактные индуктивные датчики
По сути, датчик данного типа – это прибор, принцип работы которого основан на изменениях индуктивности катушки и сердечника. Кстати, отсюда и само название. Изменения индукции происходят из-за того, что в магнитное поле катушки проникает металлический предмет, изменяя его. А соответственно и изменяется схема подключения, в которой основную роль играет компаратор. Он при изменении индукции подает сигнал на реле или конечный транзистор (выключатель), что приводит к отключению подачи электрического тока.
Поэтому основное предназначение данного прибора – это измерять перемещение части оборудования. И при превышении пределов проходимости отключать его. При этом у датчиков есть свои пределы перемещения, которые варьируются в диапазоне от 1 микрона до 20 миллиметров. Кстати, именно поэтому этот прибор называют и индуктивным датчиком положения.
Достоинства и недостатки
Начнем с достоинств:
- Простота конструкции, достаточно высокая его надежность. Полное отсутствие скользящих контактов, которые быстро выходят из строя.
- Можно использовать для подключения в электрические сети с промышленной частотой.
- Высокая чувствительность.
- Может выдерживать большую выходную мощность.
Устройство индуктивного датчика
- Напряжение и точность работы датчика взаимосвязаны, поэтому нестабильное напряжение в сети становится причиной разброса пределов реагирования.
Параметры индуктивного датчика
Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.
На практике же за основу выбора берут два показателя диапазона срабатывания:
- Эффективный.
- Полезный.
Показания первого отличаются от номинального параметра в пределах ±10%. При этом температурный диапазон расширяется от +18С до +28С. Второй определяется, как ±10% от первого при температурном режиме от 25 до 70С. И если при первом параметре используется номинальное напряжение в сети, то при втором присутствует разброс от 85% до 110% от номинала.
Есть еще один параметр, который связан с зоной срабатывания. Это гарантированный предел. Его нижняя часть равна «0», а верхняя 81% от номинального диапазона.

Необходимо учитывать и такие параметры, как гистерезис и повторяемость. Что такое гистерезис в этом случае? По сути, это расстояние между дальними позициями срабатывания датчика. Оптимальное его значение – это 20% от эффективного диапазона срабатывания.
Не последнее значение имеет и материал, из которого изготавливается объект слежения (перемещения). Оптимальный вариант – сталь 37, ее коэффициент редукции равен «1». Все остальные металлы имеют меньший коэффициент. К примеру, нержавейка – 0,85, медь – 0,3. Как понять, на что влияет коэффициент редукции? Для примера возьмем медную пластину. То есть, получается так, что диапазон срабатывания будет равно 0,3, умноженному на полезный диапазон срабатывания. Достаточно низкий показатель.
Перечислим и другие не столь важные параметры6
- Постоянное напряжение имеет диапазоны: 10-30, 10-60, 5-60 вольт. Переменное 98-253 вольт.
Внимание! Производители сегодня предлагают так называемые универсальные индукционные датчики, которые могут работать и от сети переменного тока, и от сети постоянного.
Способ подключения
Существует несколько разновидностей индуктивных датчиков, которые имеют разное количество проводов подключения.
- Двухпроводные. Включаются прямо в цепь токовой нагрузки. Самый простой вариант, но очень капризный. Для него нужен номинальное сопротивление нагрузке. Если он снижается или увеличивается, прибор начинает работать некорректно. При подключении к сети постоянного тока, необходимо соблюдать полярность.
- Трехпроводной. Это самые распространенные индукционные датчики, в которых два провода подключаются к напряжению, один к нагрузке.
- Четырех-, пятипроводные. В них два провода подключаются к нагрузке. Пятый провод – это возможность выбора режима работы.
Цветовая маркировка выводов
Все, что связано с электрическими сетями, особенно проводниками, обязательно обозначается цветовой маркировкой. Делается это для удобства проведения монтажа и обслуживания. Индуктивный датчик этого также не избежал. В нем выходы обозначены определенными стандартными цветами:
- Минус – синий цвет.
- Плюс – красный.
- Выход – черный.
- Бывает и второй выход, он белого цвета, который может быть и входом в систему управления. Об этом производитель обязательно информирует в инструкции.
Разновидности индукционных датчиков
И последнее – это конструктивные особенности, которые касаются корпуса датчика. Он может иметь цилиндрическую или прямоугольную форму. Изготавливается из металлических сплавов или пластика. Чаще всего в промышленности используются цилиндрические приборы диаметром 12 или 18 мм. Хотя есть в этой размерной линейке и другие параметры: 4, 8, 22 и 30 мм.
ИНДУКТИВНЫЕ ДАТЧИКИ И ИХ ВИДЫ

Индуктивный датчик — устройство для измерения каких либо физических величин, преобразующий информацию в электрический сигнал. Основан на принципе изменения магнитного поля, генерируемого внутри, под воздействием металлического или ферромагнитного материала.
Используя различные электромеханические схемы, можно получить элементы контроля любых технических параметров — скорости, положения, перемещения, давления, частоты, уровня жидкости, много другого.
Индуктивные датчики — это бесконтактные устройства в герметическом корпусе, что позволяет их использовать во взрывопожароопасных средах, помещениях повышенной влажности, уличных условиях эксплуатации. Отсутствие движущихся частей и контактов, многократно увеличивает ресурс работы, надежность, по отношению к механическим аналогам.
Универсальность индуктивных элементов, простота монтажа и подключения, доступная стоимость дают возможность их применения во всех сферах жизни:
- промышленность и производство — автоматизация, контроль;
- техника — датчики давления, скорости, частоты, положения;
- безопасность — системы защитного отключения, блокировки, сигнализации;
- быт — приспособления контроля водоснабжения, освещения, открытия-закрытия дверей, элементы «умного дома».
УСТРОЙСТВО, ХАРАКТЕРИСТИКИ, ПРИНЦИП ДЕЙСТВИЯ
Индуктивные (или бесконтактные) датчики, несмотря на различную специфику, имеют схожее внутреннее устройство. Металлический либо пластиковый корпус залитый компаундом (электроизоляционный состав на основе эпоксидных смол, полимеров, битума), внутри располагаются генератор ЭМП, триггер (в аналоговых устройствах детектор), индикатор состояния (светодиод), усилитель сигнала.
Генератор состоит из полупроводникового элемента, производящего ток определенной частоты, который через катушку индуктивности, с ферритовым сердечником, создает переменное магнитное поле.
При вхождении в зону чувствительности датчика, токопроводящего материала (металлического сигнального флажка или другого исполнительного элемента), индуктивность системы меняется, в свою очередь, воздействую на амплитуду тока генератора. По достижении значений срабатывания, на триггере, формируется управляющий сигнал.
Усилитель увеличивает мощность импульса до необходимых значений, после чего, в зависимости от назначения прибора, он подается на коммутационный блок (размыкает — замыкает цепь) или далее, на средство измерения или АСУ.
По устройству датчики подразделяют на:
- одинарные — с одним магнитопроводом, ветвью измерения. Схема реализована в бесконтактных выключателях;
- дифференциальные — с двумя магнитопроводами ш-образной формы, взаимно компенсирующим воздействие на сердечник, что повышает чувствительность и точность измерений. По сути, представляют собой систему двух одинарных датчиков, с общим якорем;
- трансформаторные — коэффициент трансформации изменяется при перемещении якоря, генерируя определенное напряжение на выходе вторичной обмотки. Принцип используется в элементах фиксации угловых, небольших линейных перемещений.
Индуктивные датчики работают как на постоянном токе (напряжение 12, 24, 42, 60 В), так и на переменном (до 220 В). Характеризуются следующими параметрами:
- максимальный ток;
- частота переключений — для большинства моделей до 1-5 кГц;
- предел срабатывания — минимальное значение физической величины вызывающее отклик;
- скорость срабатывания (в микросекундах);
- климатическое исполнение — диапазон температур при которых устройство гарантированно работает (от -40 0 С до +60 0 С).
Преимуществами индуктивных элементов, перед аналогичными устройствами других принципов действия, являются:
- надежность конструкции — отсутствие движущихся элементов, контактов, полная герметичность, прочность;
- ресурс работы до 10 лет, не требуют какого либо обслуживания;
- высокая чувствительность, скорость и частота срабатывания;
- мощность выходного сигнала до 100 Вт и выше;
- доступность, широкий выбор типов и производителей.
Недостатки:
- требовательны к «чистоте» и постоянству питающего тока;
- чувствительны к воздействию внешних магнитных полей, возможно искажение выходного сигнала.
ПРИМЕНЕНИЕ И СПЕЦИФИКА
В промышленности и технике, индуктивные элементы постепенно вытесняют механические концевые выключатели. Индуктивный бесконтактный датчик замыкает-размыкает управляемую цепь при попадании металла в зону чувствительности.
Различные кинематические схемы позволяют использовать устройство для контроля состояния дверей, створок, люков, положения деталей, ограничения хода подвижных элементов, системах защитного отключения, блокировки включения.
Индуктивный датчик положения позволяет фиксировать перемещение объекта расстоянием от нескольких микрометров до сантиметров. По устройству, в большинстве случаев, это дифференциальный трансформатор. Ток со вторичной обмотки подается на систему автоматизированного управления, которая контролирует работу всего агрегата, линии, машины. По такому же принципу устроены элементы измерения углов поворота.
Индуктивный датчик давления имеет электромеханическую конструкцию. Основой является элемент фиксирующий перемещение, якорь которого соединен с поршнем или мембраной. Сила, возникающая в результате воздействия давления жидкости или газа, уравновешивается пружиной, вынуждает занимать якорь определенное положение. Информация переводится в форму электронного сигнала, передается на КИП или АСУ.
Индуктивный датчик скорости отличается от бесконтактных выключателей наличием блока измерения частоты импульсов. Зубчатое колесо, вращаясь, периодически воздействует на зону чувствительности, генерируя импульсы определенной частоты, зависящие от скорости движения. Частота сравнивается блоком измерений, передается далее на КИП, АСУ, либо коммутирующий элемент.
По аналогичному принципу работают приборы измерения частоты, направления вращения, положения коленчатого вала.
По типу подключения, количеству выходов, промышленность выпускает датчики:
- двухпроводные — включаемые непосредственно в управляемую сеть. Бесконтактные выключатели, элементы сигнализации, защиты.
- трехпроводные — питание выделено отдельно (как правило это синий и красный выводы), нагрузка — сигнал, третий (черный) проводник;
- четырехпроводные — имеют два выхода для передачи информации;
- пятипроводные — пятый, вход, используется для управления режимами работы.
ПРОИЗВОДИТЕЛИ И БРЕНДЫ
Российский рынок средств КИП представлен сотнями отечественных и зарубежных марок. Европейские производители, традиционно позиционируются как поставщики наиболее качественной, но и более дорогой продукции.
Наиболее известные IFM Electronic, Balluff, Turck.
IFM Electronic — немецкая корпорация выпускающая средства измерения, автоматики с 1969 года. Товарооборот превышает миллиард евро. Реализует «всю линейку» датчиков индуктивности, системы управления, идентификации.
Balluff — один из мировых лидеров по электротехнической продукции. Компания основана в 1929 году, немецким инженером Гебхардом Баллуфом. Сегодня, это международная корпорация представленная в 30 странах планеты. Производство организовано на территории США, Бразилии, Швейцарии, Японии, Венгрии.
AECO — итальянский бренд специализирующийся на выпуске датчиков, средств КИП, автоматики. Работают уже более 50 лет.
Отечественная продукция может не уступать по качеству и стоит на 20-30% дешевле западных аналогов. Известные марки ТЕКО, Сенсор.
НПК «Теко» — завод, более 25 лет, выпускающий электроавтоматику. Помимо индуктивных приборов известен оптическими, емкостными, сенсорными устройствами.
ЗАО «Сенсор» — екатеринбургская торгово производственная компания. Производит бесконтактные выключатели для работы в северной климатической зоне (до -60 0 С ).
Нижний ценовой диапазон занимают товары Китайской Народной Республики.
© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.
Индуктивные датчики: назначение и принцип работы, устройство индуктивного датчика
Различные промышленные устройства предполагают использование всевозможных датчиков, которые отличаются своими особенностями и принципами работы. Одним из вариантов, получивших достаточно широкое распространение, является индуктивный датчик, который активно применяется в низовом оборудовании у различных систем, обеспечивающих автоматизированное управление линиями производства. Встретить такие датчики можно в устройствах, которые отвечают за работу линий пищевой и текстильной промышленности, предприятий машиностроения и многих других.

Что представляет собой индуктивный датчик?
На другие материалы, соответственно, этот прибор не реагирует и пропускает их мимо своего поля деятельности. Основное направление использования этих устройств — всевозможные автоматизированные линии и системы. У них может присутствовать как замкнутый, так и разомкнутый контакт. Принцип действия у подобных устройств осуществляется за счет присутствия специальной катушки, которая создает магнитное поле, позволяющее взаимодействовать с металлами. У такой работы есть свои особенности и принципы, которые играют важную роль.

Как действует датчик?
Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.
- При начале работы на конечный выключатель подается питание, что способствует образованию магнитного поля. Именно оно влияет на вихревые токи, которые, в свою очередь, меняют амплитуду колебаний у работающего генератора.
- Результат всех этих преобразований — получение выходного сигнала, который может варьироваться, в зависимости от расстояния между работающим датчиком и исследуемым предметом. Затем при помощи специального устройства аналоговый сигнал преображается в логический.
- Индуктивный датчик также нужен, чтобы распознавать положение металлических предметов. Это может играть важную роль на производстве. Если по линии следуют изделия, на которых металлические детали должны быть расположены в определенном порядке, то датчики проконтролируют правильность этого расположения. В случае обнаружения ошибки устройство подаст сигнал на конвейер, и программа предпримет дальнейшие действия для устранения проблемы.

Конструкция устройства
Индуктивный датчик положения имеет своеобразное устройство и состоит из нескольких важных узлов, которые обеспечивают полноценную работу этого агрегата.
- Важной деталью является генератор, именно он создает электромагнитное поле, которое помогает анализировать металлические предметы и определять их положение. Без этого поля работа была бы невозможной.
- Также в работе используется такой специальный элемент, как триггер Шмидта – в его задачу входит преобразование сигнала, чтобы датчики могли взаимодействовать с другими элементами в системе и передавать информацию дальше.
- Может использоваться усилитель – он нужен, чтобы получаемый сигнал достиг необходимого уровня для дальнейшей передачи.
- В работе датчика применяются индикаторы на светодиодах, они помогают контролировать работу устройства, сигнализируя о том, что оно включилось, а также лампочки могут загораться при выполнении различных настроек системы.
- Такое приспособление как компаунд защищает датчик от попадания внутрь воды и всяческих мелких частиц. Поскольку посторонние субстанции могут негативно сказаться на работе прибора и даже привести к его поломке, качественная защита является важным моментом.
- Корпус — в нем помещаются все перечисленные внутренние элементы, которые собираются в единое целое. Сам корпус монтируется в нужном месте при помощи специальных креплений, позволяющих расположить его так, как это требуется для правильной и эффективной работы на линии. Кроме того, оболочка защищает детали от механических воздействий и повреждений, которые могут быть получены таким путем. Для этого корпуса датчиков изготавливают из латуни, либо полиамида — они являются достаточно надежными материалами.

Что следует знать о работе датчика?
Индуктивный датчик положения — это устройство со своей спецификой, поэтому в описании его работы и принципа действия часто используются специализированные определения:
- Активная зона означает область, где степень воздействия магнитного поля проявляется в наибольшей степени. Она находится перед чувствительной поверхностью самого датчика, там уровень концентрации является самым высоким. Как правило, по размеру эта зона равна диаметру самого устройства.
- Номинальное расстояние переключения. Такой параметр считается теоретическим, поскольку он не учитывает производственных особенностей, режим температуры, уровень напряжения и прочие факторы.
- Рабочий зазор. Так обозначается тот диапазон параметров, который гарантирует эффективную и нормальную работу прибора без возникновения каких-либо проблем с его функционированием на производстве.
- Поправочный коэффициент. Этот момент связан с тем, из какого материала сделан металлический объект, обследуемый датчиком, поскольку в зависимости от этого может быть скорректировано значение рабочего зазора.

Достоинства и недостатки индуктивных датчиков
Как и различные другие приборы, эти обладают своими плюсами и минусами, которые становятся заметными в эксплуатации. Датчики стали довольно популярными благодаря тому, что у них есть несколько важных преимуществ.
- Конструкция этих агрегатов достаточно простая, она не содержит каких-то сложных элементов, требующих особой настройки. За счет этого датчики обладают высокой прочностью и надежностью, нечасто ломаются и могут постоянно использоваться на производстве. Также удобно, что у них не имеется скользящих контактов.
- Особенности устройства позволяют подключать приборы к промышленной системе напряжения без всяких проблем.
- Обладают хорошей чувствительностью, поэтому их можно использовать при работе с различными металлическими объектами.
К минусам можно отнести то, что при работе датчики могут выдавать погрешности из-за наличия различных факторов. На них может влиять температура, а также воздействие других полей похожего типа. Поэтому для качественной работы нужно обеспечить подходящие условия, которые не мешали бы датчикам правильно функционировать.
Промышленные https://techtrends.ru/catalog/tverdotelnye-rele/» target=»_blank»>индуктивные датчики Omron, Schneider Electric, Siemens, Eaton по привлекательным ценам всегда можно подобрать в нашем интернет-магазине — самостоятельно, или обратившись к нашим специалистам за консультацией.
- Роботизация производственных линий
- Роботехническая лаборатория
- Системы технического зрения
- Обязательная маркировка товаров
- Автоматизация производства
- Модернизация производства
- Комплексная поставка оборудования
- Программирование промышленных контроллеров
- Сборка электрощитов управления
- Диагностика и ремонт оборудования
- Пищевая промышленность
- Упаковка и маркировка
- Обрабатывающая промышленность
- Техническая консультация специалистов
- Предпроектный анализ объекта управления
- Составление технического задания
- Разработка проекта
- Заказ и поставка оборудования
- Тестирование оборудования
- Разработка проектной документации
- Монтаж и пусконаладка АСУ на объекте
- Обучение персонала заказчика
- Гарантийное и послегарантийное обслуживание
- Ремонт вышедшего из строя оборудования
- Срочный ремонт и замена оборудования
- Пищевая промышленность
- Упаковка и маркировка
- Деревообработка
- Обрабатывающая промышленность
- OMRON
- Schneider Electric
- SICK
- EATON
- YASKAWA
- Delta
- SIEMENS
- ABB
- Bussmann
- Обучение
- Статьи
- О нас
- Наши клиенты
- Отзывы
- Сертификаты
- Контакты
- Любая информация, переданная Сторонами друг другу при пользовании ресурсами Сайта (http://www.techtrends.ru), является конфиденциальной информацией.
- Пользователь дает разрешение Администрации Сайта на сбор, обработку и хранение своих личных персональных данных, а также на рассылку текстовой и графической информации рекламного характера.
- Стороны обязуются соблюдать данное соглашение, регламентирующее правоотношения связанные с установлением, изменением и прекращением режима конфиденциальности в отношении личной информации Сторон и не разглашать конфиденциальную информацию третьим лицам.
- Администрация Сайта собирает два вида информации о Пользователе:
— персональную информацию, которую Пользователь сознательно раскрыл Администрации Сайта в целях пользования ресурсами Сайта;
— техническую информацию, автоматически собираемую программным обеспечением Сайта во время его посещения.