Принцип действия тепловизора

ПРИНЦИП РАБОТЫ ТЕПЛОВИЗОРА

В инженерной практике существует понятия объекта и фона. Объектом обычно выступают предметы, которые необходимо обнаружить и рассмотреть (человек, автотранспорт, животное и т.п.), фоном является все остальное, не занятое объектом наблюдения, пространство в поле зрения прибора (лес, трава, здания и т.п.)

Действие всех тепловизионных систем основано на фиксировании температурной разницы пары «объект/фон» и на преобразовании полученной информации в изображение, видимое глазом. Вследствие того, что все тела вокруг нагреты неравномерно, складывается некая картина распределения ИК-излучения. И чем больше разница интенсивности инфракрасного излучения тел объекта и фона, тем более различимым, то есть контрастным, будет изображение, получаемое тепловизионной камерой. Современные тепловизионные приборы способны обнаруживать температурный контраст 0.015…0.07 градусов.

В то время как подавляющая часть приборов ночного видения, работающих на основе электронно-оптических преобразователей (ЭОП) или матриц КМОП/ПЗС, улавливают инфракрасное излучение с длиной волны в диапазоне 0,78…1 мкм, что лишь немногим выше чувствительности человеческого глаза, основным рабочим диапазоном тепловизионной аппаратуры являются 3…5,5 мкм (средневолновой ИК-диапазон, или MWIR) и 8…14 мкм (длинноволновой ИК-диапазон, или LWIR). Именно здесь приземные слои атмосферы прозрачны для ИК-излучения, а излучательная способность наблюдаемых объектов с температурой от -50 до +50ºС максимальна.

Спектральный диапазон и окна прозрачности атмосферы

Тепловизор — электронный наблюдательный прибор, строящий изображение разности температур в наблюдаемой области пространства. Основой любого тепловизора является болометрическая матрица (сенсор), каждый элемент (пиксель) которой с высокой точностью замеряет температуру.Тепловизор — электронный наблюдательный прибор, строящий изображение разности температур в наблюдаемой области пространства. Основой любого тепловизора является болометрическая матрица (сенсор), каждый элемент (пиксель) которой с высокой точностью замеряет температуру.

Достоинство тепловизоров в том, что им не требуются внешние источники освещения – сенсор тепловизора чувствителен к собственному излучению объектов. Вследствие этого тепловизоры одинаково хорошо работают днем и ночью, в том числе в абсолютной темноте. Как отмечалось выше, плохие погодные условия (туман, дождь) не создают непреодолимых помех тепловизионному прибору, в то же время делая обычные ночные приборы совершенно бесполезными.

Упрощенно, принцип работы всех тепловизоров описывается следующим алгоритмом:• Объектив тепловизора формирует на сенсоре температурную карту (или карту разности мощности излучения) всей наблюдаемой в поле зрения области• Микропроцессор и другие электронные компоненты конструкции считывают данные с матрицы, обрабатывает их и формируют на дисплее прибора изображение, являющееся визуальной интерпретацией этих данных, которое напрямую или через окуляр рассматривает наблюдатель.

В отличие от приборов ночного видения на базе электронно-оптических преобразователей (назовем их аналоговыми), тепловизоры, как и цифровые приборы ночного видения, позволяют реализовать большое количество пользовательских настроек и функций. Например, регулировка яркости, контраста изображения, изменение цвета изображения, ввод в поле зрения различной информации (текущее время, индикация разряда батарей, пиктограммы активированных режимов и т.п.), дополнительное цифровое увеличение, функция «картинка в картинке» (позволяет в отдельном небольшом «окне» выводить в поле зрения дополнительное изображение объекта целиком или какой-то его части, в том числе увеличенное), временное отключение дисплея (для энергосбережения и маскировки наблюдателя за счет исключения свечения работающего дисплея).

Для фиксации изображения наблюдаемых объектов в тепловизоры могут быть интегрированы видеорекордеры. Можно реализовать такие функции как беспроводная (радиоканал, WI-FI) передача информации (фото, видео) на внешние приемники или удаленное управление прибором (например, с мобильных устройств), интеграция с лазерными дальномерами (с вводом информации от дальномеров в поле зрения прибора), GPS-датчиками (возможность фиксации координат объекта наблюдения) и т.д.

Тепловизионные прицелы по отношению к «аналоговым» ночным прицелам для охоты также имеют ряд отличительных черт. Прицельная метка в них обычно «цифровая», т.е. изображение метки во время обработки видеосигнала накладывается поверх изображения, наблюдаемого на дисплее, и перемещается электронным образом, что позволяет исключить из состава прицела механические узлы ввода поправок, входящие в состав ночных аналоговых или дневных оптических прицелов и требующие высокой точности изготовления деталей и сборки этих узлов. Дополнительно это исключает такой эффект как параллакс, т.к. изображение объекта наблюдения и изображение прицельной сетки находятся в одной плоскости – плоскости дисплея. В цифровых и тепловизионных прицелах может быть реализовано хранение в памяти большого количества прицельных сеток, имеющих различную конфигурацию и цвет, удобная и быстрая пристрелка с помощью функций «пристрелка одним выстрелом» или «пристрелка в режиме Freeze», функция автоматического ввода поправок при изменении дистанции стрельбы, запоминание координат пристрелки для нескольких оружий, индикация наклона (завала) прицела и многое другое.

Тепловизионные прицелы и приборы: как это работает

Тепловизор – это устройство, которое способно получить изображение в инфракрасном диапазоне, причем в так называемом дальнем инфракрасном диапазоне с длиной волн от 7,5 до 14 мкм. Это принципиальная разница тепловизоров от других инфракрасных приборов, таких как приборы ночного видения. Дело в том, что инфракрасный диапазон волн электромагнитного спектра имеет более высокую длину, чем диапазон, видимый человеческому глазу.

Особенностью инфракрасного диапазона является то, что в воздухе инфракрасные волны распространяются неравномерно: волны с одной длиной поглощаются, другие же могут не поглощаться вовсе. Те участки инфракрасного диапазона, где волны не поглощаются атмосферой, называются окнами прозрачности атмосферы. В этих диапазонах и работают инфракрасные приборы, в основном их подразделяют на два типа:

— дальний инфракрасный диапазон от 8 до 14 мкм;

— ближний инфракрасный диапазон 3–5 мкм, он расположен ближе к видимому спектру.

В ближнем инфракрасном диапазоне распространяется в основном отраженное излучение, причем солнце, звезды и другие источники электромагнитного излучения светятся не только в видимом диапазоне, но и в инфракрасном, иногда даже более ярко. Поэтому приборы ночного видения позволяют фиксировать изображение ночью так же хорошо, как днем. Однако приборы, работающие в ближнем инфракрасном диапазоне, не являются тепловизионными. Как уже говорилось выше, они фиксируют лишь отраженные инфракрасные волны, поэтому могут подвергаться засветке при интенсивном отраженном излучении или не показывать ничего при полной темноте, когда нет ни одного источника излучения данного диапазона.

С тепловизорами дело обстоит иначе. Тепло – это форма энергии, которая может накапливаться, передаваться и излучаться. Таким образом, любое нагретое тело обладает электромагнитным излучением, называемым тепловым. Диапазон этих волн наиболее близок именно к дальнему инфракрасному диапазону, причем распределение энергии излучения тела по спектру зависит от температуры. При повышении температуры спектральная область излучения смещается в фиолетовую сторону, а при 100 °С тело начинает раскаляться, и появляется излучение, которое становится видимым даже человеческому глазу.

В связи с этим тепловизионные приборы преобразуют тепловое излучение от объектов и местности в видимое изображение и способны давать результат даже в полной темноте. Регистрируемое тепловое излучение является двухмерным, поэтому на дисплее тепловизора изображение визуализируется как черно-белое или «псевдоцветное», где тот или иной цвет будет соответствовать той или иной фиксируемой температуре объекта.

Устройство и принцип действия тепловизора

Техническое устройство и принцип действия тепловизора очень похожи на устройство обычного фотоаппарата. Инфракрасное излучение от нагретых предметов проходит через фокусирующую оптику и фиксируется инфракрасным сенсором (матрицей), далее полученное изображение поступает в цифровой электронный блок, где оно обрабатывается и выводится на экран дисплея.

Электромагнитные волны инфракрасного диапазона распространяются в соответствии с законами оптики, поэтому фокусирующая система тепловизора собирает эти волны и фокусирует их на инфракрасный сенсор, так же как и обычная оптическая линза. Фокусирующая оптика имеет важную характеристику – угол обзора. Чем больше этот угол, тем большая часть наблюдаемой сцены попадает на экран дисплея, но вместе с тем снижается детализация изображения.

Инфракрасный сенсор или чип по своему устройству напоминает матрицу фотоаппарата, поскольку характеризуется разрешающей способностью, которая указывается в количестве пикселей. Чем выше разрешение, тем более детализированное изображение получается. Разрешающая способность подобных датчиков ниже, чем у оптических, примерно 160х120 или 320х240 пкс. У наиболее современных моделей разрешение может составлять до 1024х768 пкс.

Очень важной характеристикой инфракрасного сенсора является динамический диапазон. Это диапазон температур, в пределах которого все объекты с такими температурами будут отображаться на дисплее.

Цифровой электронный блок обрабатывает полученное от инфракрасного сенсора изображение, убирает помехи и шумы, например вызванные собственным излучением воздуха, накладывает на изображение полезную информацию и различные данные, а также может выполнять ряд дополнительных функций (фото-, и видеозахват, выделение особо нагретых областей и т.д.)

Дисплей тепловизора тоже имеет ряд важных характеристик: диагональ, яркость и разрешение. Разрешение дисплея может не совпадать с разрешением инфракрасного сенсора, тогда итоговое изображение будет искажено. Например, если разрешение дисплея будет ниже инфракрасного сенсора – может пострадать детализация, если разрешение дисплея будет выше инфракрасного сенсора – станет заметным некорректное расстояние до объектов.

Необходимо заметить, что в работе тепловизионного оборудования есть своя специфика, например оно не дает изображения через стекло, воду или блестящие объекты, так как эти поверхности действуют как зеркала в системе.

Категории тепловизоров

Тепловизоры делятся на две категории: стационарные и переносные. Стационарные – это, как правило, тепловизоры третьего поколения, на основе матриц полупроводниковых приемников, для нормального функционирования которых часто используется азотное охлаждение.

Переносные – это наиболее современные тепловизоры, на базе неохлаждаемых микроболометров. Они более эффективны и во многом превосходят по функциональности стационарных собратьев.

Болометр – это тепловой приемник оптического излучения, который был изобретен в 1878 г. американским астрономом, физиком, пионером авиации Сэмюэлем Припонтом Лэнгли (1834–1936 гг.) Принцип действия прибора основан на изменении электрического сопротивления термочувствительного элемента вследствие нагревания его под воздействием поглощаемого потока электромагнитной энергии.

Проще говоря, главным компонентом болометра является очень тонкая, затемненная для лучшего эффекта поглощения пластинка, проводящая электрический ток. Эта пластинка из-за своей малой толщины довольно быстро нагревается под воздействием электромагнитного излучения, и ее сопротивление повышается. На основе болометра базируется большинство современных тепловизоров.

Неохлаждаемые инфракрасные детекторы делятся на классы: микроболометры, ферроэлектрики и другие типы. В свою очередь, микроболометры делятся на два подкласса – это микроболометры на оксиде ванадия (VOx), используемые в основном в США, и микроболометры на аморфном кремнии (a-Si). Ферроэлектрики также подразделяются на два подкласса – использующие толстопленочную технологию (Thick Film BST) и тонкопленочную технологию (Thin Film PLZT). К другим типам неохлаждаемых инфракрасных детекторов можно отнести Poly-SiGe и приемники на солях свинца.

Микроболометры на оксиде ванадия более чувствительные и работают при более низких температурах, их используют, как правило, для измерительных приборов. Пожарным и спасательным подразделениям высокая точность получаемой температуры не так важна, как высокая частота снимаемой информации, и для этой роли идеально подходят микроболометры с аморфным кремнием. Ферроэлектрики же значительно проигрывают микроболометрам.

Тепловизор является довольно дорогостоящим оборудованием, около 90% стоимости прибора приходятся на объектив и инфракрасный сенсор. Производство неохлаждаемых инфракрасных чувствительных элементов – очень наукоемкий и высокотехнологичный процесс. А в объективах используются редкие и дорогие материалы, такие как германий (Ge). В отличие от стекла германий обладает прозрачностью в инфракрасной области спектра, поэтому металлический германий сверхвысокой чистоты имеет стратегическое значение в производстве оптических элементов инфракрасной оптики. Именно поэтому в мире существует немного производителей, которые могут себе позволить содержать такое производство.

Принцип действия тепловизора

Любой объект излучает электромагнитные волны в очень широком диапазоне частот, в том числе и волны в инфракрасном спектре, так называемое «тепловое излучение». При этом интенсивность теплового излучения напрямую зависит от температуры объекта, и лишь в очень малой степени зависит от условий освещенности в видимом диапазоне. Таким образом, при помощи тепловизионного прибора о любом наблюдаемом объекте может быть собрана и визуализирована дополнительная информация, недоступная человеческому глазу и приборам, Тепловизор – устройство, позволяющее визуализировать картину теплового излучения наблюдаемого объекта. Это открывает ряд уникальных возможностей для разных сфер деятельности: точных измерений, контроля технологических процессов, и конечно – обеспечения безопасности.

Принцип действия современных тепловизоров основан на способности некоторых материалов фиксировать излучение в инфракрасном диапазоне. Посредством оптического прибора, в состав которого входят линзы, изготовленные с применением редких материалов, прозрачных для инфракрасного излучения (таких как германий), тепловое излучение объектов проецируется на матрицу датчиков, чувствительных к инфракрасному излучению. Далее сложные микросхемы считывают информацию с этих датчиков, и генерируют видеосигнал, где разной температуре наблюдаемого объекта соответствует разный цвет изображения. Шкала соответствия цвета точки на изображении к абсолютной температуре наблюдаемого объекта может быть выведена поверх кадра. Также возможно указание температур наиболее горячей и наиболее холодной точки на изображении. В зависимости от модели тепловизоры различаются по величине шага измеряемой температуры. Современные технологии позволяют различать температуру объектов с точностью до 0,05-0,1 К.

Многие тепловизионные приборы также оснащены устройствами памяти для записи полученного видеоизображения картины теплового излучения, производительными микропроцессорами, позволяющими осуществлять в режиме реального времени минимальную аналитику полученного в результате сканирования изображения инфракрасного излучения. Довольно часто используется конфигурация совместного использования тепловизора и видеокамеры, что позволяет в общем случае получить изображение объекта в «расширенном» диапазоне объединенных инфракрасного и видимого спектров, а в неблагоприятных условиях (например — отсутствие освещения объекта) наблюдать объект хотя бы в одном из диапазонов. ИК или видимый диапазон могут как накладываться друг на друга, так и транслироваться отдельно. Специальное программное обеспечение позволяет настроить работу тепловизионного комплекса, максимально эффективно скоординировав работу всех входящих в него устройств.

Точность изображения и другие характеристики тепловизора обычно определяются сферой его использования. В научных лабораториях используются более сложные конструкции, имеющие за счет узкой специализации наименьший шаг измеряемой температуры. Для обеспечения безопасности на различных объектах используются модели, фиксирующие тепловое излучение с чуть меньшей точностью, однако работающие на более широком диапазоне частот и с более чем достаточной для эффективного выполнения своих функций точностью. В любом случае, принцип действия тепловизора – измерение и визуализация теплового излучения – востребован во всех сферах жизни современного общества.

Технические характеристики тепловизора

Основными техническими характеристиками тепловизора, на которые обращают внимание специалисты, являются такие параметры, как тип матрицы, фокусное расстояние, чувствительность матрицы, углы обзора и температурный диапазон работы. Конечно, это только основные параметры, существуют и другие.

Так как для каждой модели, исходя из ее назначения, характеристики являются индивидуальными, то подробнее о них вы можете узнать в нашем каталоге.

Применение и использование тепловизора

Тепловизор – это прибор, предназначенный для определения теплового излучения на исследуемой поверхности. Метод исследования – бесконтактный, он обеспечивает бесперебойную работу при изучении движущихся объектов. Устройство для наблюдения за распределением температуры исследуемой поверхности.

Принцип действия тепловизора основан на преобразовании энергии инфракрасного излучения в электрический сигнал, который усиливается и воспроизводится на экране индикатора. Распределение температуры отображается на дисплее тепловизора как цветовое поле, где определенной температуре соответствует определенный цвет. Как правило, на дисплее отображается диапазон температуры видимой в объектив поверхности.

Виды тепловизоров

В зависимости от функций, которые выполняет инструмент, различают несколько его видов:

  1. Измерительные – выдают радиометрическое изображение, в результате чего можно определить температурные показатели всех объектов в зоне наблюдения. Данный вид аппаратуры применяется в медицине, строительстве, промышленности, при тестировании электрооборудования, механических коммуникаций.
  2. Наблюдательные – обеспечивают только визуализацию объектов, находят применение в военном деле, охранных и силовых структурах, в спасательных операциях и т. п.
  3. Пирометры визуальные – разновидность инструментов для наблюдения, которые способны выявить зоны с аномальным температурным режимом.

Несколько лет назад применение тепловизоров было доступно только военным ведомствам. Сегодня эти устройства используют во многих областях производственной деятельности, так как это позволяет решить многие технические вопросы.

Производство развернулось не только в виде отдельно взятых приборов, но и как составная часть гражданских биноклей, прицелов для охотничьего оружия, других оптических механизмов.

Измерительный диапазон – один из факторов, который определяет температурные возможности и условно разделяет модели на 3 типа:

  • Строительные: реагируют на температуру до +350 0 , применяются для аудита строительных сооружений, определяют качество изоляции, находят места утечек тепла из зданий.
  • Промышленные: температурные границы – более +350 0 , применяются для диагностики электросетей, промышленных систем.
  • Высокотемпературные: определяют тепловые параметры более +1000 0 , диагностируют технологические процессы с высоким уровнем нагрева.

Их использование получило широкое распространение в современной жизни как в производственных целях, так и в гражданских нуждах.

Сферы применения

Применение тепловизоров в военном деле

Область применения связана со способностью преобразовывать тепловое излучение в спектр, который воспринимает человеческий глаз, обнаруживать самые незначительные объекты, излучающие электромагнитные волны. Если определить интенсивность излучения, то можно рассчитать температуру исследуемого объекта и предположить, что это. При помощи аппарата определяется разница температур, при отсутствии контакта с объектами, они не реагируют на помехи, не могут быть обнаружены системами слежения, имеют большую дальность действия: от 100 м до 3 км. Эти принципы работы позволяют применять их в самых различных областях.

В военной технике

Новая современная техника поступает сегодня на вооружение, имея в своем арсенале встроенные тепловизорные камеры. Их использование позволяет вести боевые действия в условиях плохой видимости, обнаруживать противника и технику. Помимо этого, устройства устанавливаются на беспилотных самолетах и на технике, управляемой дистанционно.

Возможность «видеть» объекты в ночное время – основной показатель, имеющий значение приборов в военной сфере. Принцип успешной работы аппаратуры заключается в четком обнаружении теплового излучения. Для армии производятся специальные аппараты в виде биноклей, прицелов для оружия, ими оснащаются системы наведения. Они оснащены мощными оптическими механизмами, что увеличивает возможности военных тепловизоров многократно.

В морских приборах

Морской или речной порт является сложным транспортным узлом, и его безопасность может обеспечить только самая совершенная охранная аппаратура. Морские тепловизоры предназначены для обеспечения безопасности водных и прибрежных объектов: портов, причалов, складов, речных вокзалов.

Охота

Тепловизор для охоты – хорошее подспорье для тех, кто увлечен выслеживанием добычи. Использование прибора позволяет отслеживать самого осторожного зверя в любое время суток независимо от погоды и видимости.

Обследование зданий

С помощью тепловизорных датчиков есть возможность обследовать любое сооружение, чтобы определить место утечки тепла. Результаты исследования станут весомым аргументом для того чтобы доказать плохое качество теплоизоляции стен. Для коммунальщиков применение тепловизора для обследования зданий – хорошее средство правильно определить проблемные зоны и направить силы на утепление конкретных мест.

Применение тепловизора в медицине

Медицина

Использование тепловизора в медицине производилось еще во времена СССР. Приборы позволяют распознать характер заболевания, а также увидеть инфицированного человека среди здоровых по температуре тела, характерной для той или иной болезни.

Обследование с помощью специальной аппаратуры, реагирующей на электромагнитные волны, помогает обнаружить воспалительный процесс с точностью до микрона и найти область патологии. Использование аппарата позволит определить, болен пациент или здоров, увидеть источник заболевания, поставить диагноз.

Чрезвычайные ситуации и АСР

Пожарные, вооруженные прибором, могут увидеть наиболее безопасный путь выхода из огня, минуя самые горячие участки. Спасатели, вооруженные аппаратом, в самых трудных ситуациях имеют возможность найти человека в зоне плохой видимости.

Помимо перечисленных сфер, где применение измерительной тепловой техники – необходимое условие успешной деятельности, данные приборы используются и в других областях промышленности и в повседневной жизни людей. Поэтому сегодня производится много их разновидностей, и выбор тепловизора зависит только от цели его использования.

Технические характеристики устройства свидетельствуют о том, можно ли использовать его как универсальный или его специализация более узкая. Границы температур, на которые ориентирован прибор – главный критерий при выборе. Чтобы не допустить ошибку при покупке, необходимо учитывать, что температурный диапазон устройства должен быть больше температуры исследуемого объекта как минимум на 25%.

Классификация

Существует масса критериев классификации тепловизорной аппаратуры. По типу исполнения они бывают стационарные и переносные. Стационарный тепловизор предназначается для наблюдения за одной зоной, поэтому устанавливается фиксировано на определенном месте. Например, на производстве может быть установлена такая модель для слежения за температурой объектов на конвейере.

Портативные тепловизоры используются в строительстве, энергетике, некоторых отраслях промышленности. Они устроены таким образом, что их можно перемещать к различным объектам наблюдения. Их вес колеблется от 300 г до 2 кг. Разные модели оснащаются необходимыми системами: экраном, оптикой, встроенными фотоаппаратами, подсветкой и прочей гарнитурой. Переносные приборы имеют автономный аккумулятор, который обеспечивает питание техники до 8 часов.

Одной из важных функций является то, что все зафиксированные данные сохраняются в приборе, и затем их можно перенести на компьютер для дальнейшей обработки. Файлы сохраняются в виде фотографий и видео.

Особенности применения

Использование при ликвидации пожаров и проведении аварийно спасательных работ

Сравнение тепловизора и прибора ночного видения

Сравнение прибора ночного видения с тепловизором

Видим людей через дым

Тепловизор позволяет увидеть людей через дым

Остаток теплового следа

Поиск человека по тепловому следу оставленному по месту его касания на мебели, полу (в зависимости от условий следы сохраняются около 5 минут)

Применение тепловизора в промышленности

Использование тепловизора при поиске горючих, ядовитых жидкостей (сжиженных газов) в емкостях

Тепловизор не способен видеть через стекло автомобиля

Применение в энергетике проверка проводки под напряжением

Тепловизор способен видеть скрытую электропроводку под напряжением и различать неравномерность распределения температуры в электропроводах

Возможности в различных условиях

Стекло

ИК излучение не проходит через стекло, однако нагретое стекло будет отображаться, как более светлая область.

Нагретое стекло светлее

Зеркало

ИК излучение отражается через зеркало

ИК излучение не проходит через воду, в некоторых случаях проникает через туман или изморось.

Инфракрасное излучение не проходит через воду

Пар и Распыленная вода

ИК излучение может проникать или не проникать через пар, в зависимости от его плотности.

Например, туман не является преградой для тепловизора.

Распыленная струя воды и работа тепловизора

Выявление горячих пятен тепловизором

Выявление «горячих пятен»

Функция температурного датчика

Некоторые модели тепловизоров имеют функцию TT-датчика. ТТ функция окрашивает наиболее нагретые участки цветом. Чем горячее участок, тем темнее тона (на рисунке – синим цветом)

Пример использования тепловизора с датчиком при пожаре

Пример использования тепловизора с ТТ-датчиком на пожаре

Вариант использования тепловизора на пожаре

Использование тепловизора на пожаре

Видео с пожаров при работе



Материал подготовлен совместно с кафедрой ПС, ФП и ГДЗС (ИПСА ГПС МЧС России)

Тепловизор. Виды и работа. Применение и как выбрать. Устройство

Тепловизор представляет специальное устройство, которое используется для определения теплового излучения в исследуемом пространстве. В большинстве случаев это устройство имеет дисплей, на котором высвечивается цветная картинка. Каждый цвет здесь означает конкретный уровень температуры. Благодаря визуализации картинки теплового излучения открываются многочисленные возможности использования подобного прибора, к примеру, в военной и охранной сфере, в измерении и контроле технологического процесса.

Работа данного устройства строится на том, что от каждого объекта исходят электромагнитные волны в различном диапазоне частот. Это касается и инфракрасного спектра, то есть «теплового излучения». Но с единственной оговоркой, что интенсивность указанного излучения находится в прямой зависимости от текущей температуры объекта. При этом она практически не зависит от степени освещенности поверхности в видимом диапазоне. В результате тепловизионный прибор помогает получить дополнительную информацию, которую невозможно получить обычным зрением или приборами, работающими в видимом диапазоне частот.

Виды
Тепловизор по разрешающей способности инфракрасного датчика матрицы может классифицироваться на следующие классы:
  • Базовый – порядка 160×120.
  • Профессиональный – до разрешения в 640×480.
  • Экспертный – разрешение более 640×480.

Модели тепловизионных приборов могут иметь неохлаждаемый или охлаждаемый сенсор. В охлаждаемых вариантах датчик позволяет «видеть» на дальних расстояниях с высочайшей чувствительностью. Однако подобные устройства чаще всего являются стационарными, так как система охлаждения увеличивает массу и габариты устройства. Подобные приборы часто применяются в лабораториях или в качестве перевозимых устройств на автотранспорте. Неохлаждаемые приборы применяются практически повсеместно.

В зависимости от измерительного диапазона тепловизионные приборы делят на следующие виды:
  • Строительные приборы, которые работают до температуры в 350 градусов по Цельсию. Их применяют для энергетического аудита строений, оценки теплоизоляционных свойств стен, протечек трубопроводов и тому подобное.
  • Промышленные приборы, которые работают свыше 350 градусов по Цельсию. Их используют для диагностических работ механических и электрических устройств, проверки электрического оборудования, машиностроительных систем и тому подобное.
  • Высокотемпературные приборы, которые работают свыше 1000 градусов по Цельсию. Их используют в специфических случаях: для осуществления контроля техпроцессов, выполняемых при высоких температурах, диагностических исследованиях промышленных и иных устройств с узлами, подвергающихся высокой степени нагревания.
Также тепловизионные приборы бывают следующих видов:
  • Наблюдательные приборы, которые преобразуют инфракрасное излучение в видимое изображение в соответствии со специальной цветовой шкалой.

  • Измерительные приборы, которые определяют температуру объекта с помощью соотношения определенной температуры цифровому пикселю. В результате появляется картинка распределения температур.

  • Стационарные устройства часто используются на промышленных предприятиях, где необходимо контролирование технологических процессов. Подобные прибора часто имеют азотное охлаждение для обеспечения требуемых условий функционирования приемной аппаратуры.

  • Переносные приборы выполняются на базе неохлаждаемых кремниевых микроболометров. Такие агрегаты удобны в применении, и можно легко переносить, и применять в разных труднодоступных местах.

Устройство
Переносной тепловизор имеет следующие основные элементы:

  • Объектив. Для его изготовления применяются редкие материалы, к примеру, германий. Использование стекла недопустимо, так как через него не проходит инфракрасное излучение. Объектив фиксирует инфракрасное излучение. Для оптимизации пропуска света используются просветляющие тонкопленочные покрытия.
  • Матрица, то есть приемник излучения. На данный элемент приходится большая часть цены устройства.
  • Крышка объектива – предохраняет объектив от повреждения.
  • Дисплей, на нем отображаются данные, высвечивается изображение. В большинстве случаев применяется жидкокристаллический экран. Кроме тепловой информации на нем часто высвечиваются вспомогательные данные в виде заряда аккумулятора, времени, шкалы температур и иной важной информации.
  • Ручка с ремнем.
  • Элементы управления. При помощи них осуществляется настройка электронной системы.
  • Электронная система, включающая систему обработки информации. Предназначена для модификации инфракрасного излучения в видимое изображение.
  • Устройство хранения информации и ряд иных дополнительных элементов. Большинство современных приборов имеют карты памяти, которые можно вытащить, чтобы передать информацию на персональный компьютер. Предустановленные программы позволяют провести анализ картинки, в том числе выполнить их обработку для последующей печати или сохранения.
Принцип действия
  • Оптический элемент, куда входят линзы из редкого материала, фиксирует инфракрасное излучение.
  • Далее тепловое излучение направляется на матрицу, которая имеет высокую чувствительность к инфракрасному излучению.
  • Затем сложные микросхемы получают данные с матрицы, генерируя видеосигнал. В нем каждой температуре объекта соответствует определенный цвет картинки.
  • На экране дополнительно высвечивается цветовая шкала соответствия.

  • Тепловизор к тому же может быть оснащен устройством памяти, чтобы можно было записать поток видео тепловой картинки и впоследствии сохранить его на ПК. В комплекте также могут идти микропроцессоры, при помощи которых можно выполнить небольшую аналитику.

В некоторых случаях тепловизор в своем оснащении имеет видеокамеру, благодаря которой удается получить объединенную картинку в видимом и инфракрасном спектре. Благодаря специальному программному обеспечению можно произвести их наложение, в том числе выполнить их обработку.

Применение

Сегодня тепловизор широко применяется в разных сферах деятельности человека. Вызвано это тем, что указанное оборудование способно фиксировать минимальные температурные изменения, которые не может заметить глаз человека. Для работы этого прибора необходимо только инфракрасное излучение. К тому же его можно использовать на расстоянии. При существенной дальности действия, прибор невозможно выявить средствами слежения.

Ввиду указанных свойств данный прибор находит широчайшее применение в:
  • Диагностике.
  • Медицине.
  • Военной сфере.
  • Научных исследованиях.
  • Промышленности.
  • Строительстве.
  • Системах автоматики и так далее.

Так в военной разведке или охране тепловизор способен заметить технику в полной темноте на расстоянии до 3 километров. Человека же он может обнаружить на расстоянии порядка 300 метров. Медицинские устройства применяются для выявления различных заболеваний с помощью изучения параметров инфракрасного излучения. Научные тепловизионные приборы помогают проводить эксперименты и лабораторные исследования.

В промышленности устройства помогают контролировать нормальное течение технологических процессов и предотвращать внештатные ситуации. В строительстве тепловизионные приборы позволяют выявить дефекты в строительной конструкции. Это касается усталостного старения металла, появляющегося в зонах деформации. Именно там начинает выделяться большее количество тепла. Благодаря этому можно не разбирать конструкцию, чтобы отыскать дефекты и предотвратить их возможное разрушение.