Виды тектонических структур
Виды тектонических структур

Под тектонической структурой понимаются обособленные участки земной коры, отличающиеся различными условиями залегания слагающих их горных пород.
Разделение планетарного рельефа на две основные гипсометрические области — океаническую и континентальную — и ряд других особенностей позволили ученым выделить континенты (материки) и океаны в качестве крупнейших структур земной коры. Между ними существуют серьезные различия в строении земной коры и верхней мантии:
1) под континентами земная кора достигает 30— 45 км, а иногда и больше; в области океанического дна ее толщина всего 5—10 км;
2) материалы сейсмических исследований позволяют предполагать, что под океанами отсутствует гранитный слой. Здесь между базальтовым слоем и осадками выделяется «второй», или вулканический, слой океанической коры;
3) под океанами астеносфера — слой пониженных скоростей сейсмических волн в верхней мантии залегает на глубине 50—400 км, а под материками — в интервале глубин 100—250 км.
Систематизация наблюдений о залегании пластов горных пород и блоков земной коры относительно друг друга привела к возникновению самостоятельной геологической науки—тектоники, или геотектоники. Геотектоника — это учение о строении земной коры, геологических структурах и закономерностях их расположения и развития.
К числу крупных тектонических структур в пределах континентов относятся платформы, складчатые горные области и геосинклинальные области.
Платформы (фр. «плат» — плоский, «форм» — форма) характеризуются плоским рельефом и обычно имеют двухъярусное строение. Они состоят из более древнего фундамента и перекрывающего его осадочного чехла (рис. 18). Породы фундамента интенсивно смяты в складки и в той или иной степени метаморфизованы. Осадочные породы залегают на них со значительным угловым несогласием — почти горизонтально, образуя крупные и очень пологие поднятия и прогибы, осложненные антиклинальными и синклинальными складками. Подобные области платформ с двухъярусным строением называются плитами. Они возникают на месте складчатых областей в процессе их погружения под уровень моря в результате проявления отрицательных колебательных движений.
Нередко породы фундамента (граниты и др.) выходят на земную поверхность. Они обнажаются в ряде областей современных платформ. Такие участки платформ с одноярусным строением называются щитами. Примерами щитов являются; Балтийский щит Русской платформы, Алданский щит Сибирской платформы, Канадский щит Северо-Американской платформы и др. К плитам относится, в частности, Туранская плита, охватывающая обширные территории Закаспия.
В пределах плит различают тектонические структуры более низкого порядка (см. рис. 18). Крупные пологие выпуклые структуры называются антеклизами, вогнутые — синеклизами. К антеклизам относятся, например, Украинская, Воронежская и др.; к синеклизам — Московская, Вилюйская и т. д. В пределах антеклиз и синеклиз, в свою очередь, нередко выделяются в плане округлые или овальные приподнятые и опущенные структурные элементы — своды и впадины, а также узкие и длинные цепочки антиклинальных поднятий — валы и разделяющие их прогибы.
Платформы в процессе своего развития многократно покрывались сравнительно неглубокими морями. В периоды трансгрессий и регрессий в них нередко создавались благоприятные условия для формирования месторождений фосфоритов, бокситов и других полезных ископаемых. В широко распространенных на платформах болотах и озерах накапливались бурые железные руды и угли.
Тело платформы обычно рассечено в разных направлениях крупными глубинными разломами. Иногда они ограничивают внутриплатформенные зоны повышенной подвижности — авлакогены (см. рис. 18).
Геосинклинали, или геосинклинальные пояса,— это обычно линейно вытянутые очень подвижные зоны. В них активно проявляются процессы магматизма и метаморфизма. В развитии геосинклинали выделяют два принципиально разных этапа. На первом из них (собственно геосинклинальный этап) преобладают погружение и накопление мощных толщ осадков. Второй этап характеризуется преобладанием поднятий и возрастанием складкообразовательных движений; в итоге геосинклиналь превращается в горно-складчатую страну. Этот этап называют горообразовательным, или орогенным (греч. «орос» — гора, «генезис» — образование). Некоторые исследователи ограничивают понятие геосинклинали лишь этапом опускания. Они считают, что на втором этапе геосинклиналь уже перестает быть таковой и превращается в особый тип тектонической структуры — область горообразования, или ороген. Такой этап горообразования называют эпигеосинклинальным (греч «эпи»— после), т. е. послегеосинклинальным.
Член-корреспондент Академии наук СССР В. Е. Хайн выделяет четыре стадии развития геосинклиналей 1. Стадия начального погружения характеризуется последовательным расширением амплитуды и области прогибания. В опускание по разрывам втягиваются все новые и новые участки прежней суши. В конце стадии в наиболее глубоких прогибах образуются внутренние поднятия— геоантиклинали.
2. Предорогенная стадия — появление новых внутренних поднятий; обособление новых все более и более узких внутренних прогибов.
3. Раннеорогенная стадия — начало общего поднятия геосинклинальной системы; объединение внутренних поднятий в единое крупное складчатое поднятие, состоящее из пучков антиклинальных и синклинальных складок.
4. Собственно орогенная стадия — формирование на месте геосинклинальной системы высоких горных хребтов, разделенных глубокими межгорными депрессиями. Геосинклинальная система «коробится» и раскалывается. Образуются разломы, вдоль которых поднимаются отдельные блоки земной коры.
Крупными линейными тектоническими структурами, связанными с глубинными разломами, являются линеа-менты (лат. «линеаментум» — линия, черта). Они охватывают огромные участки земной коры и простираются на многие сотни и даже тысячи километров. Например, Урало-Оманский линеамент протягивается от экватора до полярных областей Советского Союза, вдоль Оманского залива, омывающего восточный край Аравийской плиты, к ирано-афганской и ирано-пакистанской границам, затем пересекает юг Туркмении и вдоль Урала доходит до Советского Заполярья.
Системы линеаментов обнаружены с помощью космической съемки. К ним относятся, например, разрывы в области горных сооружений Тянь-Шаня, Кавказа, Северного Причерноморья. Они выявлены в процессе дешифрирования космических снимков, сделанных в начале 60-х годов с советских искусственных спутников, пилотируемого космического корабля «Союз-9» и др. В 1972 г. американским спутником ЕРТС-1 заснята система линеаментов в районе плато Колорадо, в районе Невады, в Центральных Альпах, в области Южно-Африканского кристаллического щита, в Атлантической прибрежной зоне и т. п.
Космические снимки позволили ученым выделить в пределах платформ новый- тип структур — кольцевые структуры. По виду они схожи с теми, которые получены на снимках Луны и Марса. Одной из них является крупная кольцевая структура «Ришат» в Мавритании. Ее сфотографировали с американского пилотируемого космического корабля «Джемини» (1965 г.) и советского «Союз-9» (1970 г.).
Основными структурами океанов являются обширные океанические котлованы, срединно-океанические хребты и глубоководные впадины (желоба), вдоль которых океаны, например Тихий океан, отделены от материков зонами сверхглубоких разломов, уходящих на глубину до 700 км.
Некоторые ученые отрицают существование принципиальных различий между земной корой материков и океанов. Они полагают, что океаническим областям присущи те же структуры, что и материкам. Большая часть океанической котловины сопоставляется с платформами. В отличие от континентальных платформ (кратонов) океанические платформы называются талассократонами (греч. «талясса» — море, «крато» — сила).
Глубоководные желоба и ограничивающие их островные дуги сравнивают с современными геосинклинальны-ми прогибами, а срединно-океанические хребты — с горными системами суши, возникшими на месте длительно развивающихся геосинклиналей.
Академик А. В. Пейве и его последователи развивают представления о том, что геосинклинали материков (ныне складчатые области) заложились на земной коре океанического типа. Последняя в процессе эволюции геосинклиналей преобразовывалась в континентальную кору. Подобные выводы базируются на предполагаемом сходстве разреза срединно-океанических хребтов и внутренних частей геосинклинальных областей, характеризующихся высокой вулканической активностью. Такие области называются эвгеосинклиналью (греч. «эв» — истинно). Со склонов срединно-океанических хребтов драгами подняты магматические и метаморфизованные породы (так называемые офиолитовые ассоциации), которые распространены в современных складчатых областях, прошедших длительное геосинклинальное развитие.
Поскольку в срединно-океанических хребтах обнаружены породы, идентичные породам эвгеосинклиналей континентов, И. А. Резанов делает иной вывод. Он считает, что срединно-океанические хребты являются древними геосинклиналями. Развитие их уже закончилось, и они превратились в горно-складчатые (орогенные) поднятия.
Тектонические плиты Земли — строение, причины движения и столкновения
Тектонические плиты в науке
В настоящее время существует специальная область знаний, отвечающая за изучение развития сейсмической активности земной коры. Она получила название тектоники плит. Сама тектоническая (литосферная) плита представляет собой определенный структурный элемент в литосфере, который непрерывно движется в верхней мантии (астеносфере) планеты Земля.
В свою очередь, тектоника как самостоятельная наука в географии занимается изучением строения земной коры, а также динамики её движения на протяжении длительного периода времени. Она также устанавливает процесс взаимодействия литосферных блоков между собой.
Литосфера включает в себя как большие, так и маленькие плиты. На тех участках планеты, в которых отмечаются зоны с наиболее высокой сейсмической и вулканической активностью, образуются горные массивы, бассейны, каньоны, извержения вулканов, а также землетрясения катастрофического характера, приводящие к весьма печальным последствиям. В основном это происходит на границе огромных тектонических плит, которые приводят к разломам в земной поверхности.
Несомненно, изменению структуры рельефа способствует движение тектонических плит Земли. Схема развития этого явления может быть представлена в двух вариантах:
- соединение литосферных блоков. Максимальное сближение плит приводит к их столкновению и образованию горных массивов и возвышенностей;
- расхождение плит. Это способствует формированию впадин на дне океанов, а также разломов в земной коре.
Изучая карту мира, можно обнаружить, что очертания материков похожи друг на друга. Так, исследования ученых показали, что много миллионов лет назад тектонические плиты были единым целым. Такой материковый комплекс называется Пангея. Однако по мере эволюции сейсмическая активность Земли лишь возрастала, что привело к образованию отдельных литосферных блоков, отдаленных друг от друга на весьма значительное расстояние.
В настоящее время ученые различных стран мира сходятся во мнении, что через несколько веков процесс формирования материков будет иметь обратный характер, то есть литосферные блоки начнут вновь двигаться навстречу друг к другу.
Причина движения
Главной движущей силой материков является конвекция. Это явление представляет собой определенные процессы непрерывного движения веществ в земной коре. Так, особо высокая температура, выходящая за отметку 5 тыс. градусов по Цельсию, наблюдается в центральной части планеты. В процессе нагревания слои, находящиеся в недрах Земли, поднимаются. Со слоями более низкой температуры наблюдается прямо противоположная тенденция, поскольку они двигаются обратно к центру.
В результате конвекции образуется непрерывное движение веществ различной температуры, что и приводит к движению тектонических (литосферных) плит. Необходимо отметить тот факт, что скорость их передвижения составляет в среднем от двух до двух с половиной сантиметров в год. Такая характерная динамика сопоставима со скоростью роста человеческих ногтей.
Результатом деформации земной поверхности является возникновение целых горных комплексов, таких как Урал, Алтай и Кавказ, находящихся на территории России. Кроме того, сюда можно отнести Гималаи, Альпы, Анды, а также систему разломов Сан-Андреас.
При изучении сути тектоники необходимо определить, какие существуют виды тектонических структур. Так, среди них можно выделить следующие:
- дивергентная. Суть этого вида состоит в отдалении двух литосферных блоков, в результате чего образуются пропасти или горный комплекс в разных частях планеты;
- конвергентная. При этом типе происходит процесс максимального сближения двух плит, при котором более тонкий блок заходит на более плотный. Это приводит к формированию горных хребтов;
- скользящая. Её основная цель состоит в отдалении двух блоков в прямо противоположных направлениях друг от друга.
К наиболее крупным литосферным блокам можно отнести Антарктическую, Африканскую, Евразийскую, Австралийскую, а также Тихоокеанскую плиту. Кроме того, сюда можно отнести Северо- и Южно-американскую, Индостанскую плиту. На их площадь приходится около 90 процентов всей земной поверхности.
Необходимо отметить тот факт, что скользящая тектоническая структура характерна для такого материка, как Африка. На её поверхности сейчас наблюдается много разломов, особенно на территории Кении. Ученые прогнозируют, что спустя десять миллионов лет африканский континент в качестве единого целого полностью прекратит свое существование. Помимо дивергентной, конвергентной, а также скользящей тектонической структуры, выделяют континентальные, океанические и смешанные литосферные блоки.
Характеристика теорий
Существует несколько теорий тектонических плит. Наиболее популярной из них является гипотеза, выдвинутая А. Вегенером. Она основывалась на предположении, что много миллионов лет назад западная Африка и восточная часть Южной Америки были единым целым.
Вегенер внёс значительный вклад в развитие тектоники. Прежде всего, он утверждал, что литосферные блоки разной весовой категории с довольно жёсткой структурой расположены на астеносфере Земли. Внешняя мантия была весьма пластичной, вследствие чего тектонические плиты постоянно находились в хаотичном движении.
Беспорядочное перемещение платформ приводило к их неизбежному столкновению. Плиты также могли заходить на поверхности друг друга. Все эти события способствовали появлению таких природных явлений, как извержения вулканов и катастрофических землетрясений. Участки земной коры, имеющие высокую степень сейсмической активности, смещались в пространстве приблизительно на восемнадцать сантиметров в год. На земной поверхности также можно было наблюдать извержение магмы из недр.
В настоящее время некоторые учёные считают, что именно магма принимала активное участие в формировании океанического дна. Лава, выходящая из недр Земли, постепенно остывала, в результате чего формировался новый рельеф. При этом те участки земной коры, которые не принимали участия в формировании структуры дна, с помощью дрейфа литосферных блоков снова проникали в земные недра, превращаясь в магму.
Кроме того, в своих научных исследованиях А. Вегенер уделял время изучению темы вулканов. Он рассматривал вопросы, касающиеся растяжения океанического дна и состава жидких веществ в недрах Земли.
Кроме А. Вегенера существенный вклад в развитие тектонической науки внёс Шмеллинг. В своих научных трудах он впервые открыл силу движения литосферных плит. Учёный установил, что главным движущим фактором является конвекция, при которой нижние земные слои с более высокой температурой поднимаются, а верхние постепенно остывают и проходят вниз к недрам Земли.
В настоящее время современная тектоническая наука включает в себя следующие основные положения:
- земная кора состоит из литосферы и астеносферы. Первая из них имеет более хрупкое строение, в то время как последняя — более пластичную;
- главной движущей силой тектонических (литосферных) блоков является конвекция, происходящая в астеносфере;
- структура земной поверхности представлена восемью крупными плитами. Кроме того, она включает в себя как средние, так и более мелкие блоки;
- чаще всего тектонические плиты самого малого размера располагаются между основными земными блоками;
- наиболее сейсмически активными участками являются те зоны, которые находятся на границе двух платформ;
- в процессе активного перемещения плит также принимают активное участие силы, подчиняющиеся теореме вращения Эйлера.
Таким образом, именно движение тектонических платформ, происходящее на протяжении многих миллионов лет, способствовало формированию отдельных материков, островов, континентальных рифов и каньонов, которые существуют в настоящее время. Учёные выявили устойчивую тенденцию в динамике плит. Так, скорость горизонтальных сдвигов блоков возросла примерно в два раза в течение ста миллионов лет. Однако, согласно прогнозам учёных, она должна была, наоборот, уменьшиться. Исходя из этого можно сделать вывод, что характер поведения плит не является слишком предсказуемым.
Исследователи утверждают, что основным фактором, влияющим на темп движения, является вода. Именно огромное скопление жидкости внутри земной поверхности способствует смягчению мантии, в результате чего скорость перемещения плит значительно повышается. Необходимо отметить тот факт, что процесс перемещения литосферных блоков все ещё не завершён. Образ земной поверхности до сих пор продолжает формироваться.
Тектонические структуры. Древнейшие тектонические структуры
![]()
Тектонические структуры – это большие участки твердой внешней оболочки планеты. Они ограничиваются глубинными разломами. Движения и строение коры изучаются в рамках такой дисциплины, как тектоника.

Общие сведения
Тектонические структуры исследуются с помощью географического картографирования, геофизических методов (сейсморазведки, в частности), а также бурения. Изучение этих участков осуществляется в соответствии с принятой классификацией. Геология исследует средние и малые формы, размером около 10 км в поперечном сечении, тектоника – крупные образования, свыше 100 км. Первые именуют дислокациями разного типа (разрывными, инъективными и пр.). Ко вторым относят синклинории и антиклинории в складчатых областях, авлакогены, синеклизы, антеклизы в пределах плит, щитов, перикраторных опусканий. В эту категорию входят также подводные пассивные и активные окраины континентов, платформы, геосинклинальные пояса, океаны, орогены, срединно-океанические хребты, рифты и пр. Эти наиболее масштабные тектонические структуры охватывают твердую оболочку и литосферу и именуются глубинными.
Классификация
Суперглобальные древнейшие тектонические структуры достигают десятков миллионов кв. км по площади и тысячи километров по своей протяженности. Они развиваются в течение всей геологической стадии истории планеты. Глобальные тектонические структуры – это образования, которые занимают до 10 млн кв. км. Их протяженность достигает нескольких тысяч километров. Продолжительность их существования совпадает с предыдущими участками. Выделяют также субглобальные тектонические структуры земной коры. Они занимают площадь в несколько миллионов кв. км и растягиваются на тысячи километров. Период их развития – больше 1 млрд лет.

Основные тектонические структуры
На основании единства перемещения, сравнительной монолитности выделяют литосферные плиты. На сегодняшний день известно 7 крупнейших и 11-13 более мелких участков. К первым относят Евразийскую, Северо- и Южно-Американскую, Африканскую, Индо-Австралийскую, Тихоокеанскую, Антарктическую тектонические структуры. К более мелким образованиям относят Филиппинскую, Аравийскую, Карибскую плиты, Кокос, Наску и пр.
Разломные образования
Эти тектонические структуры разделяют литосферные плиты. Среди них в первую очередь выделяют рифты. Они разделены на континентальные и срединно-океанические. Последние формируют глобальную систему, протяженность которой больше 64 тыс. км. Примерами таких участков могут служить Восточно-Африканский (крупнейший на планете), Байкальский. Еще одним типом разломных образований являются трансформные участки, рассекающие рифты перпендикулярно. По их линиям происходит горизонтальный сдвиг участков литосферных плит, прилегающих к ним.

Платформы
Они представляют собой малоподвижные жесткие блоки коры. Эти участки прошли достаточно продолжительный этап развития. Платформы отличаются трехъярусным строением. В их структуре присутствует кристаллический фундамент, который формируется базальтовым и гранитно-гнейсовым слоями. В платформах выделяют также осадочный чехол. Кристаллический фундамент образован пластами метаморфических пород, смятыми в складки. Всю эту сложно дислоцированную толщу прорывают интрузии (в большинстве своем имеющие средний и кислый состав). В зависимости от возраста формирования фундамента, платформы разделяют на молодые и древнейшие тектонические структуры. Последние выступают как ядра материков, занимая их центральную часть. Более молодые образования размещены на их периферии. В осадочном чехле содержатся преимущественно недислоцированные пласты лагунных, шельфовых и в редких случаях континентальных осадков.

Щиты и плиты
Эти виды тектонических структур различают по специфике геологического строения. Щитом называют участок платформы, на котором кристаллический фундамент находится на поверхности, то есть в них отсутствует осадочный слой. В рельефе щиты представлены, как правило, плоскогорьями и возвышенностями. Плиты являются платформами либо их участками, отличающимися мощным осадочным слоем. Их формирование обуславливается тектоническим погружением и морской трансгрессией. В рельефе плитным участкам обычно соответствуют возвышенности и низменности.
Антеклизы
Они представляют собой крупнейшие положительные образования плитных участков. Поверхность фундаментов является выпуклой. Осадочный чехол не отличается большой мощностью. Формирование антеклиз осуществляется вследствие тектонического вздымания территории. В этой связи в них могут не обнаруживаться многие горизонты, присутствующие на соседних отрицательных участках.

Массивы и выступы
Они являются региональными структурами антеклиз. Массивы представлены высшими их частями. В них фундамент или находится у поверхности, или перекрывается осадочными образованиями четвертичного возраста. Выступами называют части массивов. Они представлены вытянутыми или изометричными поднятиями фундамента, достигающими в диаметре 100 км. Выделяют также погребенные выступы. Над ними осадочный чехол представлен в форме сильно сокращенного разреза.
Синеклизы
Они являются отрицательными крупнейшими суперрегиональными структурами плитных образований. Поверхность их фундамента вогнутая. Они отличаются плоским дном, а также очень пологими углами падения пластов на склонах. Синеклизы образуются при тектоническом погружении территории. В этой связи их осадочный чехол отличается высокой мощностью.

Моноклинали
Эти тектонические структуры отличаются односторонним наклоном пластов. Их угол падения редко превышает 1 градус. В зависимости от ранга отрицательных и положительных структур, между границами которых находится моноклиналь, ее категория также может быть разной. Из региональных образований осадочного чехла интерес представляют грабены, горсты, а также седловины. Последние занимают промежуточное положение по высоте поверхности. Седловины располагаются выше отрицательных структур, окружающих их, но ниже положительных.
Складчатые области
Они характеризуются резким увеличением мощности коры. Горно-складчатые области образуются при конвергенции литосферных участков. Большинству из них, особенно молодым, свойственна высокая сейсмичность. В качестве основополагающего принципа классификации горно-складчатых областей выступает возраст образований. Он устанавливается по самым молодым смятым пластам. Горные массивы разделяются, таким образом, на:
- Байкальские.
- Герцинские.
- Каледонские.
- Альпийские.
- Киммерийские.
Данная классификация считается достаточно условной, поскольку большинство ученых признает непрерывность складкообразования.

Складчато-глыбовые массивы
Эти образования формируются вследствие оживления горизонтальных и вертикальных тектонических подвижек в границах ранее возникших и зачастую уже разрушенных систем. В этой связи складчато-глыбовое строение более характерно для регионов палеозойских и более ранних этапов. Рельеф массивов, в общем, аналогичен конфигурации изгибов пластов горных пород. Однако это далеко не всегда выявляется на складчато-глыбовых участках. Например, в молодых горах структурам антиклинориев соответствуют хребты, а синклинориев – межгорные прогибы. Внутри складчатых участков, а также на их периферии выделяются, соответственно, краевые и передовые впадины и долины. На поверхности этих образований располагаются грубообломочные продукты, возникшие от разрушения горных формирований – молассы. Формирование предгорных прогибов является результатом субдукции литосферных участков.
Центральная территория России
Каждый крупный природный комплекс представлен в виде единой геоструктурной области большой площади. Это может быть платформа или складчатая система конкретного геологического возраста. Каждое образование имеет соответствующее выражение в рельефе. Все они отличаются климатическими условиями, осбенностями почвенно-растительного покрова. Интерес в первую очередь представляет тектоническая структура Урала. В современном состоянии она представляет собой мегантиклинорий, который состоит из нескольких антиклинориев, вытянутых меридионально и разделенных синклинориями. Последние соответствуют продольным долинам, первые – хребтам. Ключевой Уралтауский антиклинорий проходит через все образование. По составу рифейских отложений можно заключить, что в период их накопления происходило интенсивное опускание. При этом его неоднократно сменяли кратковременные поднятия. К завершению рифея возникла байкальская складчатость. Начались поднятия, усилившиеся в кембрии. В этот период практически вся территория превратилась в сушу. На это указывает весьма ограниченное распространение отложений, которые представлены зелеными сланцами нижнекембрийского образования, мраморами и кварцитами. Тектоническая структура Урала в нижнем ярусе, таким образом, завершила свое формирование байкальской складчатостью. В результате нее образовались участки, отличающиеся от тех, которые возникли в более позднее время. Их продолжают образования фундамента Тимано-Печорской окраины в пределах Восточно-Европейской платформы.
Сибирская тектоническая структура: Алданское нагорье
Образования на этой территории сложены доисторическими гнейсами и протерозойскими сланцами. Они относятся к докембрийской Сибирской платформе. Необходимо, однако, сказать о некоторых особенностях, которыми обладает тектоническая структура. Алданское нагорье развивалось на протяжении мезо-кайнозойской истории между южными северобайкальскими участками и платформой. На многих участках породы кристаллического фундамента находятся у поверхности. Они представлены мелкозернистыми гранитами, древнейшими кварцитами, мраморами и гнейсами. На северном склоне присутствует область, фундамент которой залегает на глубине порядка 1.5 км. Его породы прорваны гранитными интрузиями на разных этапах геологического развития.
Европейская часть
Здесь интерес представляют горы Хибины. Тектоническая структура представлена денудационными расчлененными возвышенными равнинами. Они занимают территорию Кольского п-ва и Карелии. Сформировавшая горы Хибины тектоническая структура возникла в форме интрузий и дислокаций. Именно они предопределили рельеф местности. Щелочной массив территории представлен одной из многофазных сложных интрузий. Он располагается на границе гнейского архейского комплекса и протерозойских образований свиты Варзуга-Имандра, а также в зоне ключевого поперечного разлома, который проходит по линии р. Кола — р. Нива.
ОСНОВНЫЕ ТЕКТОНИЧЕСКИЕ СТРУКТУРЫ КОНТИНЕНТАЛЬНОЙ ЗЕМНОЙ КОРЫ
Как уже отмечалось, главными структурами земной коры являются литосферные плиты — участки земной коры, совершающие самостоятельные горизонтальные перемещения. Наиболее крупные структуры, выделяемые на континентах внутри литосферных плит, — это платформы и складчатые системы (области, пояса).
Платформы — крупные участки земной коры, имеющие двухъярусное строение. Нижний ярус — складчатый фундамент и верхний ярус — чехол горизонтально залегающих пород (рис. 2.7).

Рис. 2.7. Платформа и складчатая система (распространение в земной коре пород различного генезиса)
Фундамент платформ сформировался в то время, когда на данной территории преобладали горизонтальные складчатые движения. Постепенно эти движения прекратились, а сохранились только вертикальные тектонические движения, отмеченные накоплением осадочного чехла.
В рельефе платформам соответствуют крупные равнины, низменности или плоскогорья (примеры: Русская, Западно-Сибирская, Сибирская, Туранская платформы). Размеры платформ в поперечнике составляют сотни и тысячи километров. Чехол может полностью или частично перекрывать платформу. Участки, где чехол отсутствует и на поверхность выходит складчатый фундамент, называются щитом. Мощность чехла может составлять до нескольких километров. Платформа или часть платформы с мощным чехлом называется плитой.
Синеклизы и антеклизы — обширные прогнутые вниз или выпуклые вверх участки чехла платформы. В гидрогеологии синеклизы носят название артезианских бассейнов. Синеклизы и антеклизы — это не складки. Уклон пластов очень небольшой, обычно составляет доли градуса, и форма залегания пород продолжает считаться горизонтальной. Уклон ощутим только на фоне очень больших размеров всей структуры, которые могут достигать сотен и даже тысяч километров. Синеклизы и антеклизы в осадочном чехле возникают в связи с тектоническим прогибанием или возды- манием земной коры, но в рельефе они проявляются незначительно или не проявляются вовсе (рис. 2.8) (например, Московский артезианский бассейн и Тунгусская синеклиза никак не проявляются в рельефе; Прикаспийской синеклизе соответствует Прикаспийская низменность).

Рис. 2.8. Синеклизы и антеклизы в осадочном чехле
Складчатые системы (области, пояса) — участки континентальной коры, на которых не произошел переход к вертикальным тектоническим движениям платформенного типа. Здесь преобладают горизонтальные движения, и поэтому имеет место очень сложное геологическое строение при складчатом залегании пород; развиты процессы магматизма и вулканизма, разных типов метаморфизма, сейсмическая активность (примеры: Южная и Западная Европа, Урал, Кавказ, Карпаты, Крым, Забайкалье, территория Колымской области от реки Лены до побережья Тихого океана). В рельефе складчатым областям чаще соответствуют горы, но могут быть и невысокие равнины типа восточного Казахстана или севера Средней Азии.
Различие платформ и складчатых областей хорошо прослеживается только на геологических картах и разрезах по распространению пород горизонтального и складчатого залегания.
Складчатые системы подразделяются по времени последних складчатых движений на области кайнозойской, мезозойской, палеозойской и других видов складчатости. Чем моложе область складчатости, тем она активнее. На территории областей современной (кайнозойской) складчатости по Тихоокеанскому поясу тектонические движения, сейсмические и магматические процессы продолжаются и в настоящее время. В меньших масштабах аналогичные проявления отмечаются и в отдельных местах на площадях более древних складчатых систем.
Связь тектонического строения с практикой природообустройства.
Тектоникой в значительной степени определяются как общие геологические, так и гидрогеологические и инженерно-геологические условия любой территории. Тектонические условия всегда в явной или неявной форме влияют на проблемы природообустройства, строительства, водного хозяйства и многих сторон повседневной жизни. Отметим наиболее важные из этих обстоятельств.
- 1. Своим существованием на суше как разумного и трудоспособного вида человечество обязано тектоническим процессам. Эрозии достаточно нескольких десятков миллионов лет, чтобы полностью уничтожить сушу. Океан существует 2,5 млрд лет, а уничтожение континентов могло бы произойти многократно. Их существование поддерживает тектоника.
- 2. Тектоникой определяются крупные формы рельефа — горы, плоскогорья, равнины, низменности — почти всему соответствуют свои тектонические структуры.
- 3. Тектоникой определяются формы залегания пород (горизонтальная, складчатая, наклонная и др.), трещиноватость, наличие разломов и зон дробления, присутствие магматических тел, сейсмическая активность территории (рис. 2.9).

Рис. 2.9. Формы залегания пород, определяемые тектоникой, при которых создаются различные расчетные схемы:
а — горизонтальная; б — наклонная; в — складчатая; г — с тектоническими разломами; д — с присутствием магматических тел
4. Долины крупных, средних и даже мелких рек в большинстве случаев наследуют направление геологических структур и разломов земной коры, даже когда они перекрыты мощной толщей более молодых отложений (рис. 2.10).

Рис. 2.10. Связь тектоники с расположением речной сети:
а — речные долины часто наследуют расположение глубинных разломов в фундаменте; б, в — речные долины непосредственно проходят по ослабленным зонам — осям складок и тектоническим разломам
Тектонические процессы оказывают влияние на форму (глубину, ширину) речных долин, развитие аллювиальных отложений (высоту, ширину, расположение террас, генетический тип отложений aQ) (рис. 2.11).

Рис. 2.11. Пример зависимости формы речной долины от тектонических движений:
о — преобладает движение вверх: долина глубокая и узкая (каньон), аллювиальных отложений немного; б — чередующиеся движения вверх-вниз с преобладанием движений вниз: долина широкая, неглубокая, с большим количеством аллювиальных отложений
5. Современное тектоническое поднятие территории, которое может составлять миллиметры или сантиметры в год, ускоряет склоновые процессы, такие, как эрозия, оползни, осыпи, сели и т.п.
Тектоническое опускание в большинстве случаев стабилизирует склоновые процессы, но может активизировать их на морских побережьях: под воду начинает уходить пляж, на котором гасится энергия набегающих волн; когда ширина пляжа сокращается, волны начинают достигать коренного берега и разрушать его.
Глава 1. Литосфера
В.В. Братков, Н.И. Овдиенко
Геоэкология
Учебное пособие. – М., 2005.
Глава 1. Литосфера
1.2. Природные системы литосферы
1.2.2. Тектонические структуры литосферы
Тектонические структуры могут быть разной величины — от микроструктур, изучаемых с помощью микроскопа, до самых крупных структур, занимающих громадные площади и уходящих корнями в мантию. Рассмотрим наиболее крупные и широко распространённые тектонические структуры.
Древние платформы (кратоны) — обширные участки земной коры, обладающие сравнительно малой подвижностью, с равнинным или платообразным рельефом, могут иметь двухъярусное строение. По своему строению древние платформы подразделяются на следующие структуры.
Щиты представляют собой выходы кристаллического основания древней платформы на дневную поверхность. Они формировались в период архейского и протерозойского (байкальского) орогенеза и имеют глубокое основание, иногда доходящее до мантии. Примеры: Балтийский, Алданский, Канадский щиты и др.
Плиты древних платформ — участки платформ с двухъярусным строением: в глубине залегает древний кристаллический фундамент, а верхний ярус представляет собой платформенный чехол обычно со спокойным залеганием слоёв преимущественно осадочных пород, недислоцированных и неметаморфизованных (слой чехла может достигать 8–10 км). Пример: Русская плита Восточно-Европейской платформы. В пределах плит древних платформ выделяются синеклизы и антеклизы.
Синеклиза — это крупная часть плиты, в которой залегание пород чехла образует очень пологую блюдцеобразную структуру, отличающуюся полнотой стратиграфического разреза и увеличением мощности отложений к центру. Примеры: Московская, Вилюйская, Тунгусская синеклизы и др.
Антеклиза — это крупная часть плиты, в которой залегание пород чехла представляет очень пологое куполовидное строение, мощность слоёв уменьшается к центру, возможна неполнота стратиграфического разреза. Примеры: Белорусская, Воронежская, Волго-Уральская антеклизы на Восточно-Европейской платформе. Обычно рельеф синеклиз бывает несколько пониженный по сравнению с рельефом антеклиз.
Молодые (эпипалеозойские и мезозойские) платформы (кратоны) имеют кристаллический фундамент более молодой, чем у древних платформ. По сравнению с древними платформами характеризуются большей тектонической активностью. Участки молодых платформ подвержены не столько эпейрогеническим движениям, сколько разрывным нарушениям и дифференцированным поднятиям или опусканиям отдельных глыб. Примеры: Скифская, Туранская, Западно-Сибирская платформы. Молодые платформы подразделяются на следующие структуры.
Выступы кристаллического фундамента платформы представляют собой одноярусные структуры со скоростью тектонических поднятий, несколько превышающей скорость денудации, в рельефе часто представлены горстами.
Плиты молодой платформы представляют собой двухъярусные структуры, где кристаллический фундамент перекрыт осадочным чехлом. Могут образовывать обширные плоские равнины (например, плита Западно-Сибирской платформы) или небольшие понижения в рельефе (грабены и другие структуры) между поднятиями выступов фундамента молодой платформы.
Геосинклинальные пояса (или остаточные геосинклинали) — обширные высокоподвижные, сейсмически и тектонически активные, линейно вытянутые пояса земной коры. Располагаются либо между древними материковыми платформами, либо между материковой платформой и ложем океана. Например, Андийский, Средиземноморский геосинклинальные пояса и др. Характеризуются повышенной скоростью, большим размахом и контрастностью тектонических движений, интенсивной складчатостью, надвигами и шарьяжами, напряжёнными и разнообразными магматическими процессами, явлениями регионального метаморфизма и эндогенного оруденения. Геосинклинальные пояса могут включать в себя следующие структуры.
Антиклинории — крупные, протяжённостью в десятки и сотни километров, сложно построенные участки земной коры. Представляют удлинённый комплекс складок слоёв земной коры. Характеризуются наибольшей приподнятостью рельефа в центральной части, нередко внедрением крупных интрузивных тел, развитием на крыльях склонов надвиговых нарушений. Примеры: антиклинорий Большого Кавказа, Гималайский антиклинорий и др.
Синклинории — сложные складчатые структуры общего синклинального строения, могут разделять антиклинории в крупных молодых горных системах. Пример: Калифорнийская долина и др.
Срединные массивы — относительно устойчивые участки земной коры в геосинклинальных поясах, разделяющих отдельные геосинклинальные системы или антиклинории, от которых отличаются меньшей подвижностью и более древним (вплоть до докембрийского) возрастом. Представляют собой микроконтиненты (обломки древних материков), отторгнутые при заложении геосинклинальных поясов. Примеры: Малоазиатский, Индосинийский срединные массивы и др.
Краевые (передовые, предгорные) прогибы — линейно вытянутые, асимметричные, протяжённые (свыше 1000 км) прогибы в зоне, пограничной между платформой и геосинклинальным горным сооружением, заполнены преимущественно молассовым крупнообломочным материалом. В рельефе выражены цепочкой впадин, разделённых поперечными поднятиями. С краевыми прогибами связано накопление угленосных и соленосных толщ, а также формирование структур, благоприятных для накопления нефти и газа. Примеры: Паданский, Предкарпатский, Северо-Кавказский краевые прогибы и др.