Что является носителем электрической энергии
Электрический ток и закон Ома
теория по физике 🧲 постоянный ток
Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.
Условия существования электрического тока:
- наличие заряженных частиц;
- наличие электрического поля, которое создается источниками тока.
Носители электрического тока в различных средах
| Среда | Носители электрического тока |
| Металлы | Свободные электроны |
| Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) | Положительные и отрицательные ионы |
| Газы | Ионы и электроны |
| Полупроводники | Электроны и дырки (атом, лишенный одного электрона) |
| Вакуум | Электроны |
Электрическая цепь и ее схематическое изображение
Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.
Основные элементы электрической цепи:
- Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
- Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
- Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
- Ключ (переключатель, выключатель) для замыкания и размыкания цепи.
Электрическая цепь также может содержать:
- резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
- реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
- конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
- измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.
Определение
Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.
Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах
По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».
Действия электрического тока (преобразования энергии)
Электрический ток способен вызывать различные действия:
- Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
- Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
- Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
- Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
- Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.
Основные параметры постоянного тока
Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.
Основными параметрами электрического тока являются:
- Сила тока. Обозначается как I. Единица измерения — А (Ампер).
- Напряжение. Обозначается как U. Единица измерения — В (Вольт).
- Сопротивление. Обозначается как R. Единица измерения — Ом.
Сила тока
Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:
I = q t . . = Δ q Δ t . . = N q e t .
N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).
Заряд, проходящий по проводнику за время t при силе тока, равной I:
Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?
2 минуты = 120 секунд
q = I t = 0 , 2 · 120 = 24 ( К л )
Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:
Δ q = I 1 + I 2 2 . . Δ t
Сила тока и скорость движения электронов:
n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.
Внимание!
Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.
Сопротивление
Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:
ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.
Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?
Сопротивление первого и второго проводника соответственно:
Поделим электрическое сопротивление второго проводника на сопротивление первого:
R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .
Отсюда сопротивление второго проводника равно:
Напряжение
Напряжение характеризует работу электрического поля по перемещению положительного заряда:
Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.
U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .
Закон Ома для участка цепи
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.
Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.
Закон Ома для участка цепи с учетом формулы для расчета сопротивления:
Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.
Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.
Сначала переведем единицы измерения величин в СИ:
R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )
При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,
Основные понятия электротехники, термины и определения
Рассмотрены самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.
1. Электрический ток
Движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.
К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.
Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов.
В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых «дырок». Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.
По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.

Наличие тока можно обнаружить по тем эффектам, которые он вызывает. Три эффекта сопровождают электрический ток:
в среде, окружающей провода с током, наблюдается магнитное поле;
проводник, по которому течет ток, нагревается;
в проводниках с ионной проводимостью при электрическом токе наблюдается перенос вещества.
За направление электрического тока принимается направление движения ионов металла (т. е. положительных зарядов) при электролизе растворов солей. Направление перемещения электронов в металлических проводниках противоположно вышеуказанному направлению (они перемещаются от отрицательного полюса источника к положительному).
Единицей электрического тока является 1 ампер (1 А). Эта единица выбрана в качестве основной при записи закона электродинамического силового взаимодействия проводников, что устанавливает ее связь с основными механическими единицами.
Зависимость от времени электрического тока может быть различной. У постоянного тока направление и значение не изменяются. Направление и значение переменного тока изменяются, причем особенно важен для практики переменный ток синусоидальной формы . Если электрическому току свойственны черты и постоянного и переменного тока, то такой ток называется пульсирующим.
Сила, вызывающая движение электронов в проводнике (ток), распространяется со скоростью света. Однако сами электроны движутся в проводнике со скоростями всего порядка 1 мм/с.
Подробно про электрический ток:
2. Контур электрического тока
В электрической цепи электрический ток циркулирует по замкнутому контуру. От источника ток течет по проводу через выключатель к приемнику, где он и производит желаемый эффект.
По второму проводу ток возвращается к источнику, проходит через него и снова начинает свой путь. На этом пути электрический ток черпает энергию для своего движения в источнике, а затем отдает ее приемнику обычно путем ее перехода в энергию другого вида — световую, тепловую, механическую и т.д.

В природе и технике встречается много подобных циклических процессов. Например, хорошую, но, конечно, формальную аналогию можно усмотреть в случае движения воды в системе охлаждения автомобиля. Вода получает тепловую энергию от стенок цилиндров двигателя внутреннего сгорания.
Даже без водяного насоса возникает движение воды по трубопроводам системы охлаждения и вода отдает большую часть полученной тепловой энергии в радиаторе, являющемся в данном случае приемником энергии.
Согласно современным представлениям электрический ток в проводниках образуется очень большим количеством мельчайших носителей заряда, называемых электронами. Электрический заряд следует рассматривать как одну из основных характеристик частиц и тел, которая проявляет себя в различного рода силовых взаимодействиях.

3. Электродвижущая сила, напряжение
Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС). Источники электрической энергии называются источниками ЭДС.
На участке электрической цепи, где заряды отдают энергию, имеет место так называемое падение напряжения. Падение напряжения на участках цепи — приемниках называют короче просто напряжением.
Исходящий от источника ЭДС «импульс напряжения» распространяется со скоростью света, в то время как сами электроны движутся с очень малыми скоростями.
Электрический ток в простой электрической цепи одинаков на всех ее участках, и вследствие высокой скорости распространения импульса напряжения все электроны приходят в движение практически одновременно.
В случае разомкнутой цепи с источником ЭДС направленного движения потока электронов в ней быть не может. Однако в этой цепи свободные электроны находятся в состоянии постоянной готовности к движению, как только электрическая цепь будет замкнута. В таком случае принято говорить, что оба конца разомкнутой цепи находятся под напряжением.
Направления ЭДС Е и падения напряжения U совпадают с направлением тока, т. е. противоположны направлению движения электронов.
Единицей ЭДС и напряжения является 1 вольт (1В).
Для напряжения выбран ряд стандартизованных значений, чтобы установить единство в снабжении потребителей электрической энергией.
Для потребителей малой мощности применяются главным образом напряжения 12, 24, 36, 48, 110, 220 В. Для промышленных сетей низкого напряжения и бытовых сетей установлены напряжения 220 и 380 В. Для передачи электроэнергии на дальние расстояния применяются высокие напряжения 6000, 10000, 35000, 110000, 220000, 330000, 500000 и 750000 В.
Подробнее про электродвижущую силу и напряжение:

4. Электрическое сопротивление, закон Ома
При своем движении по проводнику электроны сталкиваются с атомами и при этом теряют часть своей энергии, что приводит к нагреву проводника. Таким образом, наблюдается сопротивление движению электронов. Опыты показывают, что ток в участке электрической цепи тем больше, чем больше напряжение (падение напряжения) на этом участке.
При определенных условиях между электрическим током и напряжением существует линейная зависимость: I = GU .
Символом G в данном уравнении обозначена электрическая проводимость участка цепи, которая тем больше, чем меньшее сопротивление оказывает проводник прохождению электрического тока.
Однако на практике чаще применяется величина, обратная проводимости, которая называется электрическим сопротивлением: R = 1/G , откуда R = U/I . Это равенство служит для определения электрического сопротивления и известно под названием закона Ома для участка цепи.
Георг Симон Ом (1789—1854) обнаружил в 1826 г., что сопротивление многих материалов (проводников) не зависит от значения тока в проводнике и, следовательно, является константой.
Из закона Ома следует, что с ростом напряжения пропорционально увеличивается ток и что при увеличении сопротивления ток уменьшается. Единицей электрического сопротивления является 1 Ом.

На практике часто требуется определить электрический ток в некотором приемнике. Значение этого тока можно установить на основании известных значений электрического сопротивления приемника и поданного на него напряжения.
Если напряжение будет слишком велико, то ток может быть настолько большим, что вследствие теплового эффекта может разрушить приемник. Большие значения тока могут возникнуть в электрической цепи и при слишком малом сопротивлении или в случае прямого контакта (короткого замыкания) токоведущих частей цепи.
Для защиты устройств и приборов от перегрузок по току в электрические цепи включаются плавкие предохранители, которые перегорают, или автоматические выключатели, которые выключаются если ток в цепи превышает некоторое определенное значение.
Сопротивление проводника или провода тем больше, чем больше его длина l и чем меньше площадь его поперечного сечения S.
Значение электрического сопротивления зависит также и от материала, из которого изготовлен проводник. Каждый материал характеризуется электрическ ой констан той : удельным электрическим сопротивлением ρ . Следовательно, уравнение для расчета сопротивления проводника имеет следующий вид: R = (ρl)/S.
Сопротивление проводника зависит не только от его длины, площади поперечного сечения и материала, но и от температуры.
У ряда материалов значение электрического сопротивления при температуре вблизи абсолютного нуля скачкообразно падает до чрезвычайно малого значения. Это явление получило название сверхпроводимости. В настоящее время явление сверхпроводимости не получило еще широкого применения в технике, однако уже с успехом используется при решении некоторых специальных технических задач, как, например, при получении сверхмощных магнитных полей для физических исследований.
Подробнее об электрическом сопротивлении и законе Ома:

5 . Энергия и мощность
В каждой электрической цепи происходит обмен энергией. Следует при этом различать два процесса: получение электрической энергии (в источнике ЭДС) и ее преобразование в другие виды (на участках цепи, где есть падение напряжения).
Принимая во внимание закон Ома, можно написать выражение для энергии электрического тока, преобразуемой в приемнике с сопротивлением R (закон Джоуля—Ленца): W = I 2 Rt
При расчетах электроэнергетических установок чаще в качестве единиц энергии выбирают ватт-час или киловатт-час. Электрическую энергию можно преобразовывать в другие виды энергии.
Электрический ток нагревает проводники, т. е. электрическая энергия преобразуется в тепловую энергию (тепловой эффект Джоуля). В электродвигателях электрическая энергия переходит в механическую (смотрите — Виды электродвигателей).

Мощность можно определить как изменение энергии в единицу времени : P = dW/dt
Мощность в цепи постоянного тока: P = UI . Единица мощности — Вт.

В электроэнергетике широко применяются единицы мощности киловатт (кВт) и мегаватт (МВт), причем 1 кВт = 10 3 Вт и 1 М Вт = 10 6 Вт, а в слаботочной и измерительной технике — милливатт (мВт), причем 1 мВт = 10 -3 Вт. Мощность является важнейшей характеристикой электрических машин и приборов, так как для практики важна их способность производить работу в единицу времени.
Электрическая энергия, ее свойства и применение. Современное состояние и перспективы развития электроэнергетики.
Решающая роль в современном научно-техническом прогрессе принадлежит электрификации. Как известно, под электрификацией понимается широкое внедрение электрической энергии в народное хозяйство и быт, и сегодня нет такой области техники, где в том или ином виде не использовалась бы электрическая энергия, в будущем ее применение будет еще более расширяться.
В эпоху индустриализации подавляющий объем электроэнергии вырабатывается промышленным способом на электростанциях.

Современная энергетика базируется в основном на энергетическом топливе: каменном угле, торфе, нефти и газе. Однако запасы этих источников ограничены, темпы потребления их возрастают с каждым днем. Поэтому научные мысли энергетиков направлены на поиски таких источников энергии, которые не иссякли бы с течением времени
В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солнечные батареи, малые газогенераторы (устройство для преобразования твёрдого или жидкого топлива в газообразную форму (газификации). Наиболее распространены газогенераторы, работающие на дровах, древесном угле, каменном угле, буром угле, коксе и топливных пеллетах. Газогенераторы, использующие в качестве топлива мазут и другие виды жидкого топлива, применяются значительно реже). Развитие электроэнергетики сегодня является основным условием научно-технического прогресса и технического совершенствования производства. Единственным недостатком электрической энергии является «отсутствие склада готовой продукции», т. е. запасать электроэнергию и сохранять эти запасы в течение больших сроков человечество еще не научилось.
Электроэнергию преобразуют в механическую с помощью электродвигателей, которые используют для привода станков и вращающихся машин в различных отраслях промышленности, сельском хозяйстве и быту. Кроме того, электрическую энергию широко используют в технологических установках для нагрева изделий, плавления металлов, сварки, электролиза, для получения плазмы, новых материалов с помощью электрохимии, для очистки материалов и газов и т. Работа современных средств связи — телеграфа, телефона, радио, телевидения, Интернета — основана на применении электрической энергии. Без нее невозможно было бы развитие кибернетики, вычислительной и космической техники и т. д. Электроэнергия является сейчас практически единственным видом энергии для искусственного освещения. Намечаются и осваиваются новые области использования электрической энергии (магнитная подушка для транспортных средств, электромагнитные насосы для перекачивания жидких металлов и т. п.). Всем ясно, что без электрической энергии невозможна нормальная жизнь современного общества. Она используется абсолютно всеми бытовыми электроприборам.апасы в течение больших сроков человечество еще не научилось.
Электрическая энергия — самый дешевый и удобный вид энергии. Она широко используется в народном хозяйстве и в быту. Производство и потребление электрической энергии растет с каждым годом.
Для работы подавляющего большинства современных промышленных машин, аппаратов, приборов и бытовых устройств необходим источник электрической энергии (источник тока). Источником тока может быть генератор на электростанции, батарея гальванических элементов, аккумулятор.
Электрическая энергия, вырабатываемая источником, принимается потребителем (приемником) электроэнергии. Потребители электроэнергии — это и лампочка в фонаре, и двигатель в электрокаре и в станке, и электрический звонок, и электрический утюг, и многие другие устройства. В них электрическая энергия преобразуется в свет, звук, тепло, механическое движение.
Для передачи электрической энергии от источника тока к потребителю нужны проводники. Хорошими проводниками являются металлы.
Материалы, не проводящие ток, называются изоляторами. К ним относятся пластмасса, стекло, фарфор, резина, сухая древесина, сухой воздух и др.
Электрическую энергию можно получать по-разному. Существуют электростанции, которые вырабатывают электричество, сжигая топливо; электроэнергию получают используя силу ветра, приливных течений, а также – энергию солнца.
Источники электроэнергии
Основным источником электроэнергии в мире являются, как известно, различного рода электростанции – тепловые электростанции, гидроэлектростанции и электростанции атомные.
Тепловые электростанции (ТЭС), работающие на органическом топливе (уголь, мазут, газ, сланцы, торф), являются на сегодня основным видом используемых в России энергопроизводителей.
Выбор места размещения тепловых электростанций определяется в основном наличием в данном регионе природных и топливных ресурсов. Мощные ТЭС строятся, как правило, в местах добычи топливных ресурсов или недалеко от крупных центров нефтеперерабатывающей промышленности. Тепловые электростанции, на которых в качестве топлива используются местные виды горючего (сланец, торф, низкокалорийные и многозольные угли), стараются размещать согласно потребности в электроэнергии и, в тоже время, с учётом наличия тех или иных видов топливных ресурсов.
Электростанции, работающие на высококалорийном топливе, доставка которого к месту использования экономически целесообразна, размещаются обычно с учётом потребительского спроса на электроэнергию.
Гидроэлектростанции представляют собой специальные сооружения, возведённые в местах перекрытия больших рек плотиной и использующие энергию падающей воды для вращения турбин электрогенератора. Этот способ получения электроэнергии является наиболее экологичным, поскольку обходится без сжигания тех или иных видов топлива и не оставляет никаких вредных отходов после себя.
Атомные электростанции (АЭС) отличаются от тепловых лишь тем, что, если в ТЭС для нагрева воды и получения пара используется горючее топливо, то в АЭС источником нагрева воды служит энергия тепла, выделяемого в процессе ядерной реакции.
В настоящее время большую часть всей вырабатываемой в мире электроэнергии дают тепловые электростанции, мощность которых может составлять сотни тысяч и миллионы киловатт.
Для совместного и согласованного производства электроэнергии электростанции различного типа объединяют в энергосистемы. Объединение электростанций, а также самих энергосистем между собой позволяет снизить стоимость электроэнергии и гарантирует бесперебойность режима электроснабжения потребителя. Объясняется это тем, что производство и расходование электроэнергии происходят одновременно, и невозможно аккумулировать всю вырабатываемую энергию в каком-либо виде. Поэтому электростанции обязаны иметь определённый резерв по рабочей мощности, необходимый для того, чтобы быть способными в любой момент удовлетворить возросший спрос на электроэнергию со стороны потребителя (на возросшую нагрузку). А величина потребления (спроса на энергию) может резко колебаться при изменении режимов и условий работы потребителей.
В городах в зимний период, например, потребление электроэнергии резко возрастает, а летом — снижается. В сельском хозяйстве, напротив, электрические подстанции больше загружены именно летом, когда производятся сезонные полевые работы. Кроме того, максимальные нагрузки электростанций, расположенных на востоке и западе страны обычно не совпадают из-за разницы во времени. При коллективной работе электростанций они подпитывают друг друга, что обеспечивает их более равномерную загрузку и повышение КПД работы.
На электростанциях, не входящих в состав энергосистемы, не допускается применение мощных узлов по транспортировке и преобразованию электроэнергии. Объясняется это тем, что выход подобного узла из строя моментально парализует работу промышленных предприятий, обесточивает целые районы и грозит аварийной остановкой систем водоснабжения и т. п.
При объединении энергопроизводителей в энергосистемы нет оснований отказываться от таких мощных агрегатных узлов, поскольку нагрузку вышедшего из строя участка линии мгновенно подхватят оставшиеся в рабочем состоянии системы.
Наряду с традиционным способом получения электроэнергии с помощью электростанций всё большую популярность приобретают в последнее время альтернативные источники электроэнергии. К подобным источникам можно отнести, например, ветряные электрогенераторы, которые преобразуют природную силу ветра в электрический ток.
Всё большей популярностью в наше время пользуются и солнечные батареи, которые, в отличие от электрогенератора, используют принцип прямого преобразования энергии солнечных лучей в электрическую энергию (фотоэффект).
Виды источников энергии и их использование
Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.
Существует два типа энергии:
- способность совершить (потенциальная)
- собственно работа (кинетическая)
Поставляется в различных формах:
- тепла (тепловая)
- свет (лучистая)
- движение (кинетическая)
- электрическая
- химическая
- ядерная энергия
- гравитационная
Например пища, которую человек ест содержит химическую и тело человека хранит её пока он или она израсходует как кинетическую во время работы или жизни.
Классификация видов энергии
Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.
Источники энергии делятся на две группы:
- Возобновляемые
- Невозобновляемые
Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.
Возобновляемые
Есть пять основных возобновляемых источников энергии:
- Солнечная
- Геотермальное тепло внутри Земли
- Энергия ветра
- Биомасса из растений
- Гидроэнергетика из проточной воды
Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.
Невозобновляемые
Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:
- Нефтепродукты
- Углеводородный сжиженный газ
- Природный газ
- Уголь
- Ядерная энергия
На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.
Сырая нефть, природный газ и уголь представляют ископаемые виды топлива, поскольку они были сформированы в течение миллионов лет под действием Солнца, тепла от ядра земли и давления почвы на остатки (или окаменелости) из отмерших растений и существ как микроскопическая диатомия. Большинство нефтяных продуктов, потребляемых в мире изготовлены из сырой нефти, но нефтяные жидкости также могут быть сделаны из природного газа и угля.
Ядерная энергетика работает больше на уране, источнике невозобновляемого топлива, чьи атомы делятся (с помощью процесса, называемого ядерным делением) для создания тепла и, в конечном счете, электричества.
Основными пользователями этих запасов являются жилые и коммерческие здания, промышленность, транспорт и электроэнергетика. Характер использования топлива широко варьируется в зависимости от системы применения. Например, нефть обеспечивает 92% топлива, используемого для транспортировки, но обеспечивает лишь около 1% ресурсов, используемых для выработки электроэнергии. Понимание взаимосвязей между различными видами энергии и её использование дает представление о многих важных вопросах энергетики.
Первичная энергия
Первичная энергия как вид включает в себя нефть, природный газ, уголь, ядерная энергия и возобновляемые источники энергии.
Электричество является вторичным источником, который создается с помощью этих первичных форм. Например, уголь является первичным источником, который сжигается на электростанциях для выработки электроэнергии, которая является вторичным источником.
Первичные виды энергии обычно измеряются в различных единицах, например, баррелях нефти, кубометрах газа, тоннах угля. Также используется общая единица измерения британская тепловая единица, или БТЕ, для измерения содержания для каждого типа.
- Измерение
1 Вт = 859.8 кал/час
1 Вт = 3.412 BTU/час
BTU – британская тепловая единица (БТЕ) Россия потребляет квадриллионы БТЕ.
В терминах физических величин, один квадриллион составляет примерно 172 миллиона баррелей нефти, 51 млн. тонн угля или 1 трлн. куб. м газа.
На нефть приходится наибольшая доля в потреблении первичной энергии, затем природный газ, уголь, атомные электростанции и возобновляемые источники энергии (включая гидроэнергию, ветра, биомассы, геотермальные, солнечные).
Как распределяются виды энергии в каждой системе
Различные виды энергии используются в жилых и коммерческих зданиях, на транспорте, в промышленности и электроэнергетике. Электроэнергетическая система является крупнейшим потребителем первичной и используется для выработки электроэнергии. Почти вся электроэнергия используется в зданиях и промышленности. Общее количество электроэнергетической системы, используемой в жилых и коммерческих зданиях, промышленности и транспорте огромное.
Смесь первичных источников широко варьируется в различных системах спроса. Энергетическая политика, призванная повлиять на использование конкретного основного источника с целью повлиять на окружающую среду, экономическую или энергетическую безопасность сосредоточивается на системах, которые являются основными пользователями этого типа энергии. Например, 71% нефти используется в транспортной системе, где она потребляет 92% от общего объема первичного энергопотребления.
Политика по сокращению потребления нефти чаще всего относится к транспортной системе. Эта политика обычно стремится увеличить эффективность автомобильного топлива или поощрять развитие альтернативных видов топлива.
Около 91% угля и только 1% из нефти, используется для выработки электроэнергии, что выявляет стратегию, влияющую на выработку электроэнергии, и имеет гораздо большее значение на использование угля, чем использование нефти.
Некоторые первичные виды энергии, такие как ядерная и угольная, полностью или преимущественно используются для добычи электричества. Другие, такие как природный газ и возобновляемые источники, более равномерно распределены по системам. Аналогичным образом сейчас транспорт почти полностью зависит от одного вида топлива (нефтяного).
Однако электроэнергетика с внедрением новых технологий больше использует различные источники энергии для выработки электричества. Например, идут практические реализации для получения электричества из биомассы.
Изменяется ли потребление топлива с течением времени
Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.
Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.