Принцип работы мультиплексора
Применение и принцип работы мультиплексора и демультиплексора
На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.
В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.
- Методы мультиплексирования ↓
- Временной вариант ↓
- Классификация мультиплексоров ↓
- Аналоговые мультиплексоры ↓
- Цифровые мультиплексоры ↓
- Области применения ↓
- Структура мультиплексора ↓
- Демультиплексор ↓
- На что следует обратить внимание при выборе мультиплексора? ↓
Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.
При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.
Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.
Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.
Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.
Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.

Линия связи мультиплексора и демультиплексора
Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.
Мультиплексирование бывает таких видов:
- временного характера;
- пространственного типа;
- кодовым;
По этой причине стоит более подробно ознакомиться с частотным и временным методами:
Методы мультиплексирования

Частотное мультиплексирование и демультиплексирование
Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.
Временной вариант

Временное мультиплексирование и демультиплексирование
Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.
При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.
Этот способ используют, как правило, для цифровых связных каналов.
Классификация мультиплексоров
Мультиплексоры существуют таких видов:
- Терминальные. Их размещают на концах связных линий.
- Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.
Также мультиплексоры классифицируются таким способом:
Аналоговые мультиплексоры
Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство
Цифровые мультиплексоры

Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.
Области применения
Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.
Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.

Схема применения оптического мультиплексора
Структура мультиплексора
Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.
Структуру мультиплексора можно рассмотреть на примере его общей схемы. Входные данные логического типа поступают на выходы коммутатора, и далее через него направляются на выход. На вход управления подается слова адресных каналов. Само устройство тоже может обладать специальным входом управления, который дает возможность проходить или не проходить входному каналу на выход.
Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.
Демультиплексор
Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.
Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.
В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.
На что следует обратить внимание при выборе мультиплексора?
- Какие камеры используются – черно-белые, цветные?
- Общее количество камер, которое возможно подключить к устройству.
- Тип мультиплексора.
- Разрешение устройства.
- Наличие детектора, определяющего движение.
- Можно ли подключить второй экран монитора?
При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
- Вычислительная техника
- Микроконтроллеры микропроцессоры
- ПЛИС
- Мини-ПК
- Силовая электроника
- Датчики
- Интерфейсы
- Теория
- Программирование
- ТАУ и ЦОС
- Перспективные технологии
- 3D печать
- Робототехника
- Искусственный интеллект
- Криптовалюты
Чтение RSS
Мультиплексоры и демультиплексоры: принцип работы, объяснение на простом примере, применение
Мультиплексоры и демультиплексоры (mux и demux в англоязычном сокращении) представляют собой довольно распространенные компоненты в цифровой электронике. Понимание происходящих в них логических процессов позволят лучше понимать схемы с их участием и разрабатывать более сложные электронные устройства

Мультиплексоры и демультиплексоры работают противоположно друг другу, но в соответствии с одним и тем же принципом. Они состоят из информационных входов, информационных выходов и коммутатора (селектора).
На изображении ниже схематично представлены мультиплексор и демультиплексор.

Мультиплексор имеет несколько информационных входов. Коммутатор мультиплексора выбирает, какой из этих входов нужно использовать и подключает его к информационному выходу, который у мультиплексора только один. Эту ситуацию можно сравнить с тем, если бы вам куча людей хотела бы сказать что-то свое, но за один раз вы можете выслушать только одного.
Демультиплексор, наоборот, имеет только один информационный вход, и коммутатор подключает его к какому-то одному информационному выходу в каждый момент времени. То есть, это так же, как если бы вы хотели сказать что-то толпе людей, но за каждый момент времени вы можете сказать это только одному человеку из этой толпы.
Существуют также микросхемы, которые объединяют в себе функции мультиплексоров и демультиплексоров. В англоязычном варианте они обычно обозначаются mux/demux. Также они могут называться двунаправленными мультиплексорами или же просто коммутаторами. Они позволяют сигналу передаваться в обоих направлениях. Так что не только вы можете поговорить с кем-то, но и кто-то из толпы может поговорить с вами в определенный момент времени.
К внутреннему коммутатору в данном случае обычно подходят несколько информационных входов, которые адресуются в двоичной форме. Практически во всех таких микросхемах есть линия OE (output enable или выход активен). Также внутри микросхемы имеется демультиплексор с одним входом и, обычно, с четырьмя выходами. Для выбора выхода у микросхемы имеются также две линии для адресации выхода (00, 01, 10, 11).
Существуют как цифровые, так и аналоговые мультиплексоры. Цифровые представляют собой логические коммутаторы, у которых на выходе будет то же напряжение, что и напряжение питания. Аналоговые же подключают к выходу напряжение выбранного входа.
Принцип мультиплексирования и демультиплексирования использовали на заре развития телефонии в начале прошлого века. Тогда человек, который хотел позвонить своему товарищу, брал телефонную трубку и ждал ответа оператора. Это мультиплексорная часть, поскольку в определенный момент времени оператор из множества выбирает линию, на которой «сидит» этот человек. Человек сообщает, что хочет поговорить с товарищем, номер которого 12345. Это уже коммутаторная часть, здесь оператор получает номер (адрес). Далее он подключает разъем, к каналу товарища. Это демультиплексорная часть. Здесь одна линия из множества каналов соединяется только с одним.
Мультиплексоры и демультиплексоры помогут вам решить задачу с расширением количества входных или выходных линий, если число GPIO вашего микроконтроллера слишком мало. Если у вас в проекте предусмотрено много датчиков, то вы можете подключить их к мультиплексору. Выход мультиплексора затем нужно подключить к АЦП и переключая адреса линий последовательно считывать данные с датчиков.
Также мультиплексоры полезны, когда у вас есть несколько микросхем с интерфейсом I2C, которые имеют одинаковый адрес. Просто подключите линии SDA/SCL к коммутатору и управляйте ими последовательно. Мультиплексоры и демультиплексоры можно задействовать еще и в качестве преобразователей уровней.
Таким образом, эти устройства представляют собой большую ценность для цифровой электроники. Их правильное применение может значительно упростить проект.
Мультиплексоры, демультиплексоры
Мультиплексоры (селекторы) и демультиплексоры (распределители) относятся к узлам ЦУ комбинационного типа, предназначенным для логической коммутации сигналов.
Они получили широкое распространение в аппаратуре многоканальной связи для формирования и разделения цифровых сигналов, в аппаратуре автоматической связи для коммутации каналов, а также для формирования различных логических функций.
Совместное использование мультиплексоров и демультиплексоров позволяет реализовать различные схемы коммутаторов, соединяющих источники и приемники информации в соответствии с заданным адресом.
Принципы построения и работа мультиплексора
Мультиплексором называется функциональный узел, управляемый кодом и обеспечивающий логическую коммутацию одного из информационных входов к общему выходу.
Входы мультиплексора делятся на информационные и управляющие (адресующие).
На информационные входы подаются двоичные сигналы (либо 0 либо 1).
Управляющие (адресующие) сигналы представляют собой кодовые комбинации, обеспечивающие прозрачность для одного из информационных входов.
Обычно двоичный адресный код соответствует десятичному номеру коммутируемого информационного входа.
Например: код 101 управляет 5-м информационным входом; код 1010 управляет 10-м информационным входом и т.д.
Если n-разрядность используемого адресного кода, то число возможных адресов т.е. информационных входов NBx = 2 П , т.е. при использовании
- 2- х разрядного кода NBXmax = 4;
- 3- х разрядного кода NBXmax = 8 и т.д.
Рассмотрим принцип построения и логику работы 3-х разрядного мультиплексора. По определению сигнал на выходе F соответствует сигналу на входе Dj (F=Dj) только при определенной кодовой комбинации. Составим таблицу истинности:
Номер информационного канала
Сигнал на выходе
А2 — старший разряд управляющего кода;
Dj — сигнал на выходе i-ro информационного канала;
F — общий выход мультиплексора.
В соответствии с таблицей запишем БФ для F в СДНФ:

Функция (4.7) может быть реализована в любом базисе логических элементов. Проще всего построить схему мультиплексора в булевом базисе (рис. 4.19).
Из анализа таблицы состояний и выражения (4.7) следует, что при каждой конкретной комбинации управляющего кода прозрачным для входного сигнала Dj будет только один ЛЭ И (на его входе А; (А,) соответствует логической 1), который подключает этот сигнал к выходу, т.е. F = Dj.
Как следует из рисунка 4.19, реализация БФ требует источник парафаз- ных управляющих сигналов (Aj и Ai).

Рис. 4.19 Схема мультиплексора в булевом базисе
В реальные схемы мультиплексоров вводят управляющие дешифраторы, число выходов которых равно числу информационных входов. Выходной сигнал дешифратора (логическая 1) включает соответствующий ЛЭ И, причем в любой момент времени может быть открыт только один ЛЭ.
При необходимости в схему мультиплексора может быть введен тактовый сигнал С.
Вариант схемы 3-х разрядного мультиплексора (8 в 1) с управляющим дешифратором и его УГО приведены на рисунке 4.20.
Мультиплексоры входят в состав многих ИМС. Типовые структуры логических коммутаторов имеются в сериях ИМС К155, К500, К555. В серии ИМС К155, например, имеются:
КП1 — логический коммутатор «16 в 1» с управляющим дешифратором;
КП2 — мультиплексор на две 4-х канальные группы;
КП5, КП7 — мультиплексоры «8 в 1» с управляющим дешифратором.
Мультиплексоры, реализованные в других сериях, можно найти в справочниках по ИМС.

Рис. 4.20 Схема 3-х разрядного мультиплексора (8 в 1) с управляющим дешифратором и его УГО
Что такое мультиплексор и демультиплексор
Что такое оптические мультиплексоры (MUX) и демультиплексоры (DEMUX)?
Мультиплексоры и демультиплексоры – это оптические устройства, выполняющие функции объединения и коммутации нескольких информационных каналов в сетях и волоконно-оптических трактах. На входные порты мультиплексора поступают потоки данных, которые объединяются в общий трафик и передаются через выходной порт по оптоволоконной линии связи. На приемной стороне происходит обратный процесс, позволяющий выделить исходные сигналы и отправить их по назначению.
На сегодняшний день используются две категории мультиплексоров и демультиплексоров:
- активного типа – оборудование потребляет электроэнергию для своего функционирования. Область применения – цифровые системы PDH и SDH;
- пассивного типа – оборудование не нуждается во внешнем источнике электропитания. Мультиплексирование/демультиплексирование сигналов осуществляется при помощи специальных фильтров. Сфера использования – системы спектрального уплотнения WDM.
Рисунок 1 — Внешний вид оптического мультиплексора
Пассивные WDM мультиплексоры
Отличия мультиплексоров и демультиплексоров WDM
Мультиплексоры WDM выполняют объединение каналов с различными длинами волн и передают групповой трафик на приемную сторону. Демультиплексоры производят обратные действия с выделением отдельных частотных каналов. Конструкция оборудования, изготовленного на основе пассивных фильтров, полностью идентична, а входы/выходы работают в прямом и обратном направлении.
Единственное отличие существует в мультиплексном оборудовании CWDM, отличающемся реализацией функций мультиплексирования/демультиплексирования посредством каскада последовательно соединенных одноканальных фильтров. В мультиплексоре фильтры выстраиваются по принципу возрастания длины волны, а в демультиплексоре – по принципу убывания с целью выравнивания затухания в каждом канале.
Рисунок 2 — Каскад CWDM фильтра
Выгода применения WDM мультиплексоров/демультиплексоров
В обычных системах передачи цифрового трафика по оптоволокну, таких как SDH, существует возможность передачи только одного канала данных по паре оптических волокон. Установка мультиплексоров/демультиплексоров позволяет организовать передачу до 96 каналов по тем же двум волокнам. Огромный прирост производительности способствует популярности этого оборудования у операторов связи, интернет-провайдеров, владельцев мультисервисных сетей.
Применение систем WDM-мультиплексирования исключает необходимость постоянного наращивания емкости волоконно-оптических кабелей и затрат на их приобретение и прокладку. Преимущества решения особенно ярко проявляются на протяженных ВОЛС, проложенных в малодоступной местности. При росте объема передаваемого трафика достаточно установить WDM-мультиплексоры, чтобы увеличить пропускную способность в десятки раз.
Виды WDM мультиплексоров
Рисунок 3 — Схема CWDM структуры
Мультиплексоры CWDM объединяют и разделяют сигналы на несущих длинах волн благодаря использованию тонкопленочного фильтра на каждом канале передачи/приема. Фильтры соединяются последовательно, формируя целую цепочку устройств по числу организуемых каналов. В состав тонкопленочного фильтра входят четыре компонента: непосредственно оптический фильтр, фокусирующие С/G-линзы, корпус в виде пластикового бокса.
- DWDM – система с более плотным спектральным уплотнением, реализуемым за счет сокращения межканального интервала до 0,5 – 0,8 нм и применения лазеров с узким спектром излучения. Производители оборудования используют два диапазона длин волн: C – от 1530 до 1625 нм и L – от 1568 до 1610 нм. Применение С-диапазона позволяет применять эрбиевые (EDFA) и рамановские усилители, увеличивающие дальность работы по ВОЛС. DWDM-оборудование работает по одной из частотных сеток: 100 ГГц с межканальным расстоянием 0,8 нм и 48-ю мультиплексируемыми каналами, 50 ГГц с интервалом между каналами 0,4 нм, обеспечивающим мультиплексирование 96 каналов. Единственным недостатком этого решения является более высокая стоимость.
Рисунок 4 — Схема DWDM структуры
DWDM-мультиплексоры производятся на базе фильтров AWG, представляющих собой массив волноводов из диоксида кремния. В состав фильтра входят несколько функциональных элементов, обеспечивающих передачу и прием оптических сигналов по оптоволокну:
- С-линза – выполняет функцию фокусирования световых лучей из массива волноводов в оптическое волокно на передаче и из оптического волокна в массив волноводов на приеме;
- массив волноводов – кристалл с отдельными дорожками, соответствующими длинам волн;
- фокусирующая пластина – предназназначена для стыковки волноводных дорожек и оптических волокон в соответствии с длинами волн.
Дорожки волноводов размещаются в определенных местах вдоль плоскости кристалла, позволяя осуществить пространственное разделение каналов.
Как происходит мультиплексирование?
Рассмотрим процесс мультиплексирования нескольких каналов с разной длиной волны. Оптические сигналы поступают на фокусирующую пластину, на которой происходит их фокусировка и интерференция. На выходе образуется мультиплексный сигнал, распространяющийся одновременно по всем дорожкам массива волноводов. С-линза фокусирует этот сигнал в оптическое волокно для последующей передачи по волоконно-оптической линии связи. На приемной стороне выполняется обратный процесс демультиплексирования.
Световое излучение на всех длинах волн проходит одинаковый путь по массиву волноводов. Поэтому, вносимое затухание для мультиплексоров AWG на любой длине волны одинаково и составляет 5 – 7 дБ.
Рисунок 5 — Мультиплексирование и демультиплексирование длин волн
Почему стоит выбрать нас?
Рисунок 6 — Оптический мультиплексор/демультиплексор в корпусе 19″ производства АО «Компонент»
Обращайтесь к нам при необходимости срочного повышения производительности оптоволоконной сети или магистральной ВОЛС любого масштаба и протяженности. Наши менеджеры помогут выбрать оборудование, полностью соответствующее специфике проекта и особенностям топологии сети.
Мультиплексор (электроника)


Mультиплексор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Аналоговые и цифровые [1] [2] мультиплексоры значительно различаются по принципу работы. Первые электрически соединяют выбранный вход с выходом (при этом сопротивление между ними невелико — порядка единиц/десятков ом). Вторые же не образуют прямого электрического соединения между выбранным входом и выходом, а лишь «копируют» на выход логический уровень (‘0’ или ‘1’) с выбранного входа. Аналоговые мультиплексоры иногда называют ключами [3] или коммутаторами.
Устройство, противоположное мультиплексору по своей функции, называется демультиплексором. В случае применения аналоговых мультиплексоров (с применением ключей на полевых транзисторах) не существует различия между мультиплексором и демультиплексором; такие устройства могут называться коммутаторами.
Содержание
Устройство
Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Коммутатор обслуживает управляющая схема, в которой имеются адресные входы и, как правило, разрешающие (стробирующие).
Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных выходов
и числом адресных входов
действует соотношение
, то такой мультиплексор называют полным. Если
, то мультиплексор называют неполным.
Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, то есть могут блокировать действие всего устройства.
В качестве управляющей схемы обычно используется дешифратор. В цифровых мультиплексорах логические элементы коммутатора и дешифратора обычно объединяются.
Обобщённая схема мультиплексора


Входные логические сигналы Xi поступают на входы коммутатора и через коммутатор передаются на выход Y. На вход управляющей схемы подаются адресные сигналы Ak (от англ. Address ). Мультиплексор также может иметь дополнительный управляющий вход E (от англ. Enable ), который разрешает или запрещает прохождение входного сигнала на выход Y.
Кроме этого, некоторые мультиплексоры могут иметь выход с тремя состояниями: два логических состояния 0 и 1, и третье состояние — отключённый выход (высокоимпедансное состояние, Z-состояние — выходное сопротивление равно бесконечности). Перевод мультиплексора в третье состояние производится снятием управляющего сигнала OE (от англ. Output Enable ).
Использование
Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры могут использоваться для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним.
Обозначение
Мультиплексоры обозначают сочетанием MUX (от англ. multiplexer ), а также MS (от англ. multiplexer selector ).