Расчет емкости аккумуляторной батареи для пожарной сигнализации

Расчет емкости аккумуляторной батареи для пожарной сигнализации

РЕЗЕРВИРОВАННЫЙ ИСТОЧНИК ПИТАНИЯ
АППАРАТУРЫ ОПС «РИП-24» (исп. 01)(Выдержка)
1.2 Основные технические характеристики
1.2.1 Основной источник питания
сеть переменного тока напряжением (220+22-33) В.
1.2.2 Резервный источник питания
батареи «CSB» GP 1270 12 В, 7A·ч (2 шт.) или другой фирмы с аналогичными параметрами.
1.2.9 Время непрерывной работы РИП от заряженных батарей при токе нагрузки 1 А, не менее
5 ч (при уменьшении тока нагрузки время работы увеличивается пропорционально)

Это инфа по HR 12-18, который 3А, 17А*ч.

По графику (да и в текстовке вначале) как раз показан разряд для тока 3,31А в течение 5 часов. Разряд идёт до 10,5В. За 5 часов. Использованная ёмкость в этом случае 16,55 А*ч. И дальше такая закономерность: меньше ток — больше ёмкость. Для варианта 24+1 даже при соотношении нагрузок в дежурном и пожаре 1 к 2 соответственно тут впору не повышающий, а понижающий коэффициент вводить! Это насчёт неполноты разряда.

Смотрим теперь минимальное рабочее напряжение питания регистратора и разрядные кривые http://www.delta-batt.com/upload/ibl. Там, правда, на 5А минимум, но можно и прикинуть на 3А через пропорцию, погрешность будет допустимая.

А там есть и аккумуляторы 100 Ач, 120 Ач, 150 Ач, 200 Ач
Только не забудьте, что это бокс, надо еще зарядное устройство к нему.

Аккумулятор 18ач разрядные кривые
http://www.delta-batt.com/upload/ibl.
при 3А она обеспечивает нормальное питание 12В ваши 3 часа

а если 7Ач
http://www.delta-batt.com/upload/ibl.
и даже если предположить, что ток нагрузки разпределяется идеально поровну — то номинальное напряжение 12В продержиться всего 2 часа.
А при перекосе по току — еще меньше.

4. Расчет максимальных токовых нагрузок

Блок питания «Скат 1200» 3,5А

«Сигнал 20» — «Дежурный» режим
Ток потребления прибора при питании от источника напряжением 12В рассчитывается по формуле: I = 3,33 х i+ 400 мА
Где I – общий ток потребления прибора (без учета внешних оповещателей) (мА)
i – ток потребления активных извещателей в ШС (мА)

I = 3,33 х 30 + 400 = 500 мА = 0,5А

Мощность потребляемая пожарной сигнализацией в «Дежурном» режиме составляет Р= 12В х 0,8А = 6 Вт

«Сигнал 20» — режим «Пожар»
Ток потребления прибора при питании от источника напряжением 12В рассчитывается по формуле: I = 3,33 х i+ 400 мА
Где I – общий ток потребления прибора (без учета внешних оповещателей) (мА)
i – ток потребления активных извещателей (два извещателя сработали)в ШС (мА)
I = 3,33 х 80 + 400 = 667 мА = 0,67А
Световое табло «Выход» 11шт. х 40мА =440мА=0,44А
Общий ток потребления пожарной сигнализацией составляет 0,67 + 0,44 = 1,1А
Каждое реле прибора рассчитано на ток 2А при напряжении 28В.
Мощность потребляемая пожарной сигнализацией в режиме «Пожар» составляет Р= 12В х 1,1А = 13,2 Вт

Комплекс речевого оповещения «Октава 80Ц»

В соответствии с инструкцией завода изготовителя в «Дежурном» режиме ток потребления от АКБ составляет 0,1А, а в режиме оповещения 7А.
Мощность потребляемая от сети в «Дежурном» режиме 8Вт, в режиме оповещения не более 90Вт.
Время стабильной работы от резервного источника питания в «Дежурном» режиме не менее 24 часов, в режиме оповещения не менее 1 часа.

Общая максимальная потребляемая мощность автоматической пожарной сигнализацией от сети переменного тока составляет:
В режиме «Пожар»: 90Вт + 13,2Вт = 103,2Вт
В «Дежурном» режиме: 8Вт + 6Вт = 14Вт

5. Расчет времени работы пожарной сигнализации от резервного источника питания

Если у Вас время работы системы в тревожном режиме должно составлять 1ч., то эту величину можно прибавить к общему токопотреблению системы в тревожном режиме, тем самым учесть ток запуска модулей.

Но к чему такие сложности?

Если уж хочется этот ток учесть, то, на мой взгляд, проще сразу посчитать увеличение ёмкости АКБ, которое потребуется для обеспечения пускового тока:

C[А*ч] = I[А]*t[ч] = (16с/3600)*2А = 0,00444ч*2А = 0,00888А*ч

0,009А*ч это настолько мало, что я бы этот пусковой ток в расчёте ёмкости АКБ не учитывал.

Есть ещё один нюанс.
Если у Вас батарея малой ёмкости, например 2,2 А*ч, то при токе 2А она будет разряжаться довольно быстро.

Если судить по разрядным кривым:

то при токе 0,22А разряд до уровня в 10В произойдёт за 10ч, а при токе 2,3А — за 0,5ч. Т. е. ёмкость батареи уменьшиться в 10/0,5 = 20 раз.

Т. е. C = 5,58+0,078 = 5,66А*ч — с учётом пускового тока.

Если взять поправочный коэфициент 1,2 на старение батареи, то в итоге:

Как выбрать аккумулятор для пожарной сигнализации?

Наличие пожарной сигнализации на объекте является залогом того, что эта система позволит вовремя выявить и предупредить о начавшемся возгорании. Благодаря этому удастся избежать распространения огня на большую территорию, уменьшив материальный ущерб от пожара и защитив людей от несчастных и летальных случаев. Поскольку основными элементами, обеспечивающими работу сигнализации, являются электронные устройства, гарантированное срабатывание сигнализации будет возможно, когда все ее составные элементы будут постоянно находиться под рабочим напряжением. Для питания устройств сигнализации применяется стандартная бытовая сеть 220 В, которая является основной и способна поддерживать отказоустойчивую работу сигнализации неограниченное время. Но, возможна ситуация, когда по той или иной причине будет отсутствовать напряжение в основной сети. В таком случае поддержка работоспособности охранного устройства возлагается на резервные источники, роль которых может выполнять аккумулятор для пожарной сигнализации.

Какие виды аккумуляторов существуют для пожарной сигнализации?

Основным источником резервного питания, который применяется во многих современных системах пожарной безопасности, является аккумулятор для пожарной сигнализации 12 вольт. В некоторых случаях, чтобы обеспечить групповое питание пожарных извещателей, могут применяться аккумуляторные батареи с номинальным напряжением 24 В. Для обеспечения работоспособности беспроводных пожарных датчиков, в основном, используются аккумуляторные батарейки типа «Крона» с номинальным напряжением 9 В.

Все аккумуляторные батареи, которые устанавливаются в охранных комплексах в качестве резервного источника, являются свинцово-кислотными необслуживаемыми устройствами. По технологии производства различают два типа:

  1. AGM-аккумулятор;
  2. гелиевая батарея.

В устройствах первого типа между свинцовыми пластинами устанавливаются специальные абсорбирующие стекловолоконные маты. Их роль заключается в том, чтобы впитывать в себя электролит – это не позволит ему проливаться, когда батарея опрокидывается.

Гелиевый аккумулятор для пожарной сигнализации предусматривает использование вместо стекловолоконного материала вязкой желеобразной консистенции из электролита.

Она получается вследствие добавления в обычный электролит добавок, содержащих соединения кремния. Они обеспечивают связывающее действие на кислотный раствор, превращая его в желе, которое также не вытекает при опрокидывании аккумулятора.

Гелиевые аккумуляторы, за счет использования вязкого электролита, имеют больший ресурс по циклам заряда-разряда – они могут выдерживать до 600 таких циклов. В то же время для AGM-устройств количество циклов зарядки/разрядки может составить 300. Если гелиевый аккумулятор может выдерживать и глубокий разряд, то AGM-батарея считается разряженной, когда остаток заряда составляет около 30%.

Что касается саморазряда, то он выше у аккумуляторов со стекловолоконным наполнителем. Гелиевая основа обеспечивает меньший саморазряд, поэтому такие устройства хорошо подойдут для тех случаев, когда разряд будет происходить длительное время с использованием токов небольшой величины.

Как рассчитать емкость аккумулятора для пожарной сигнализации?

Выбирая резервный источник для сигнализации, естественным вопросом, который возникает, является о том, как рассчитать емкость аккумулятора для пожарной сигнализации. Чтобы батарея смогла обеспечить работу всех устройств, когда пропало основное питание от внешней сети, важно правильно провести расчет емкости аккумуляторной батареи для пожарной сигнализации. Процедура расчета достаточно проста и заключается в следующем:

  • необходимо произвести умножение величины интервала времени, когда сигнализация работает в дежурном режиме, на величину тока, потребляемого в этом режиме;
  • также следует выполнить произведение величины временного интервала, когда охранное устройство будет работать в тревожном режиме, на величину тока, потребляемую в этом случае;
  • полученные результаты следует просуммировать и умножить на коэффициент старения аккумулятора, который составляет ориентировочно 1,25;
  • значение, которое дает такой расчет аккумуляторной батареи для пожарной сигнализации и будет величиной требуемой емкости.

Величину длительности времени работы в штатном и дежурном режиме можно определить из нормативной документации, которая предусматривает, что на дежурный режим сигнализации отводится ориентировочно 24 часа, а на длительность режима тревоги – 3 часа. Величину тока потребления устройствами охраны в каждом из режимов можно узнать из ее технической документации.

Рекомендации по выбору аккумулятора

Чтобы аккумуляторная батарея могла длительное время обеспечивать резервное питание всех элементов сигнализации важно правильно ее подобрать. Существует несколько несложных правил, которые следует обязательно учитывать при покупке резервного источника питания для своего комплекса охраны.

  1. Аккумулятор должен производиться с использованием «гелиевой» или AGM- технологии.
  2. Важно учитывать мощность аккумулятора и значение нагрузки, которую можно подключать к батарее.
  3. Емкость аккумуляторной батареи должна быть больше той величины, которую дал расчет АКБ для пожарной сигнализации.
  4. Следует узнать, нужно ли выполнять заземление батареи через специальный контур или ее эксплуатация допускается и без него.
  5. Температурный режим аккумулятора должен быть как можно больше – батарея должна поддерживать свои оптимальные параметры как при отрицательных температурах, так и высоких положительных.
  6. Важным фактором остаются также и габаритные размеры аккумуляторов – батарея должна быть компактна и иметь небольшой вес при оптимальных электрических параметрах.

Пример схемы подключения аккумулятор к пожарно-охранной сигнализации

Заключение

Сегодня на рынке предлагается множество аккумуляторов от различных производителей, которые можно использовать в составе пожарной сигнализации. Чтобы не ошибиться и приобрести ту, которая обеспечит полнофункциональную работу сигнализации, следует выполнить расчет ее емкости и придерживаться рекомендаций, которые были представлены выше. В таком случае вы гарантированно будете знать, что сигнализация всегда находится в рабочем состоянии и защищает ваше имущество от вероятного пожара.

Методика расчета параметров прибора в системе ОПС

При проектировании и эксплуатации систем охранно-пожарной сигнализации возникает необходимость расчета параметров шлейфа и электропитания ОПС.
Соответствие этих параметров требуемым в нормативно-технической документации непосредственно влияет на эксплуатационную надёжность системы ОПС.
Рассмотрим методику расчета некоторых важных параметров.

Расчет сопротивления шлейфа сигнализации и допустимого количества подключаемых извещателей с электрическими контактами на выходе

Допустимое количество включаемых в шлейф сигнализации электроконтактных извещателей определяется из условия сохранения суммарного сопротивления шлейфа сигнализации ниже установленного предельного значения.
Входное сопротивление шлейфа, нагруженного на резистор, определяется по формуле:

где Rвх — входное сопротивление шлейфа сигнализации;
Rд — дополнительное сопротивление, определяемое переходным сопротивлением контактов в местах электрических соединений участков шлейфа, а также сопротивлением контактов в местах подключения извещателей;
Rизв – переходное сопротивление выходных цепей извещателя;
Rпр – сопротивление проводников шлейфа сигнализации;
Rок – сопротивление оконечного элемента.

Сопротивление шлейфа сигнализации Rш, без учёта сопротивления оконечного элемента, определяется по формуле:

Rш = RвхRок = Rд + Rизв + Rпр. (2)

Фактическое сопротивление шлейфа сигнализации Rш должно удовлетворять условию:

Rш ? Rшд , (3)

где Rшд – максимальное допустимое сопротивление шлейфа сигнализации.

Значения сопротивлений Rшд и Rок указываются в технической документации на ПКП.

где Rизвi — переходное сопротивления выходных цепей одного извещателя;
Nпи – общее количество извещателей, включаемых в шлейф.

Для одного извещателя, использующего в чувствительном элементе спаянный (сварной) контакт или сухие электрические контакты (в том числе герметизированные), максимальное значение Rизвi может быть принято 0,15 Ом.

Дополнительное сопротивление Rд определяется по формуле:

где Rдi— максимальное значение дополнительного переходного сопротивления контактов в местах электрических соединений каждого из участков шлейфа, значение Rдi может быть принято 0,1 Ом;
Nпи – общее количество ПИ, включаемых в шлейф;
Ксм – коэффициент сложности монтажа, учитывающий количество электрических соединений участков шлейфа.
Значение Ксм для большинства систем находится в пределах 1,05-1,5.
Для системы пожарной сигнализации средней сложности приближенно может быть принято Ксм = 1,2.

Сопротивление двух проводников шлейфа сигнализации Rпр определяется по формуле

где ? — удельное сопротивление материала токопроводящей жилы;
для меди ? = 1,72*10 -3 Ом*см;
l – длина шлейфа, м;
S – поперечное сечение токопроводящей жилы, мм 2 .

Значение сопротивления Rпр двух медных проводников шлейфа в зависимости от диаметра жилы и длины приведено в табл. 4.1.

Из выражений (2), (3) с учётом (4)-(6) максимальное количество извещателей, включаемое в шлейф сигнализации, может быть определено по следующей формуле:

Расчет допустимого количества подключаемых в шлейф сигнализации активных (энергопотребляющих) извещателей

Расчет проводится из условия соответствия токовой нагрузки в двухпроводном шлейфе сигнализации приёмно-контрольного прибора требуемым техническим условиям.
Завышенное значение нагрузки может привести к неустойчивой работе прибора или полной потере его работоспособности.
Значение токовой нагрузки шлейфа с подключенным оконечным элементом и пожарными энергопотребляющими извещателями различных видов определяется по формуле

где Iн.доп — максимальное допустимое значение тока потребления всеми установленными в шлейф сигнализации извещателями (указывается в технической документации на прибор приёмно-контрольный);
Q — коэффициент, учитывающий воздействие помех, а также переходные процессы в шлейфе; Q ? (0,7 – 0,8).Опыт эксплуатации приемно-контрольных приборов показал, что для обеспечения их устойчивой работы в условиях влияния электромагнитных помех, а также в моменты включения или кратковременных перерывов напряжения питания, не рекомендуется нагружать шлейфы больше чем на 70 – 80 % от ICмакс.

Таким образом, допустимое количество пожарных (энергопотребляющих) извещателей k -го типа, включаемых в шлейф сигнализации при установленном количестве извещателей других типов, может быть определено по формуле

где n — общее количество всех видов энергопотребляющих извещателей, включаемых в шлейф сигнализации;
k — индекс типа извещателя.

Если в шлейф сигнализации включаются извещатели одного k-го типа, то

При дробном значении результата Nk выбирается как ближайшее меньшее целое.

Таблица 1. Электрическое сопротивление двух медных проводников шлейфа в зависимости от диаметра жилы и длины

Расчет параметров резервного источника электропитания

Ток потребления системы Iп.д. от резервного источника питания в дежурном режиме:

где I н.д. – начальный ток приёмно-контрольного прибора в дежурном режиме;
I шj – ток, протекающий в j-ом шлейфе сигнализации;
r количество используемых шлейфов сигнализации;
К — коэффициент преобразования, К = 2.

где I ншj — начальный ток в шлейфе без извещателей с подключенным оконечным элементом;
I нагр шj — ток нагрузки шлейфа с пожарными энергопотребляющими извещателями различных видов (определяется по формуле (8)).

Ток потребления системы в режиме «Пожар» I п.п (при включении устройств пожарной автоматики):

где I аz — ток потребления z-й линии пуска пожарной автоматики;
s — общее количество линий пуска.

Время работы системы пожарной сигнализации T в автономном режиме (от резервного источника постоянного тока – аккумулятора) определяется с помощью выражений:

в дежурном режиме:

в режиме «Пожар»:

где С — ёмкость аккумуляторной батареи;
M – поправочный коэффициент:
М = 1,1 при С / I п. д. (п.п.) > 10;
М = 1 при 10 > С / I п. д. (п.п.);
М = 0,75 при 4 > С / I п.д. (п.п.) > 1;
М = 0,5 при С / I п.д.(п.п)

Электропитание систем пожарной сигнализации

Все приборы, предназначенные для пожарной сигнализации в ИСО «Орион», питаются от низковольтных источников электропитания (ИЭ) постоянного тока. Большинство приборов адаптированы к широкому диапазону напряжения электропитания – от 10,2 до 28,4В, что позволяет применять источники с номинальным выходным напряжением 12 В, или 24 В. Особое место в системе пожарной сигнализации может занимать персональный компьютер с АРМ диспетчера. Он, как правило, питается от сети переменного тока, стабилизация и резервирование которого обеспечивается источниками бесперебойного питания, UPS.

Распределенное размещение оборудования по большому объекту, которое легко реализуется в ИСО «Орион», требует обеспечения питания приборов в местах их установки. С учетом широкого диапазона напряжений питания можно, при необходимости, размещать источники питания с выходным напряжением 24 В на удалении от приборов-потребителей, даже с учетом значительного падения напряжения на проводах. Однако наиболее удобным в этом плане представляется обеспечение питания в адресно-аналоговой системе пожарной сигнализации на основе контроллера С2000-КДЛ . В данном случае адресные извещатели и релейные модули С2000-СП2, подключенные к сигнальной двухпроводной линии связи контроллера С2000-КДЛ, будут получать питание по этой линии. Исключениями будут являться блоки «С2000-СП2 исп.02» и «С2000-БРШС-Ех» требующие отдельных источников питания.
Если рассматривать случай радиорасширения адресно-аналоговой системы, то в соответствии с п. 4.2.1.9 ГОСТ Р 53325-2012 все радиоустройства имеют основной и резервный автономные источники питания. При этом среднее время работы радиоустройств от основного источника — 5 лет и от резервного — 2 месяца. «С2000-АРР32» может питаться, как от внешнего источника (9 —28 В) так и от ДПЛС. Из-за высокого токопотребления устройства в большинстве случаев рекомендуется применять первую схему питания.
Основной нормативный документ, определяющий параметры на электропитание систем пожарной сигнализации и — ГОСТ Р 53325-2012 . В частности:

1) ИЭ должен иметь индикацию:
— наличия (в пределах нормы) основного и резервного или резервных питаний (раздельно по каждому вводу электроснабжения);
— наличия выходного напряжения.

2) ИЭ должен обеспечивать формирование и передачу информации во внешние цепи информации об отсутствии выходного напряжения, входного напряжения электроснабжения по любому входу, разряде аккумуляторов (при их наличии) и иных неисправностях, контролируемых ИЭ.

3) ИЭ должен иметь автоматическую защиту от короткого замыкания и повышения выходного тока выше максимального значения, указанного в ТД на ИЭ. При этом ИЭ должен автоматически восстанавливать свои параметры после этих ситуаций.

В зависимости от размера объекта, на электропитание систем пожарной сигнализации может потребоваться от одного ИЭ до нескольких десятков источников питания. На больших, распределенных по территории объектах, расчет схемы электропитания сводится к выбору между использованием маломощных источников питания с короткими отрезками кабелей питания и использованием меньшего количества мощных источников, с прокладкой множества кабелей питания до приборов. Для упрощения этой задачи имеется широкая номенклатура сертифицированных источников питания для пожарной сигнализации с разным выходным напряжением и током нагрузки: РИП-12 исп.02П, РИП-12 исп.04П, РИП-12 исп.06, РИП-12 исп.15, РИП-12 исп.16, РИП-12 исп.17, РИП-24 исп.01П, РИП-24 исп.02П, РИП-24 исп.06, РИП-24 исп.15.

Во всех РИП для питания технических средств пожарной автоматики имеются три раздельных релейных выхода, гальванически развязанных от остальных цепей и между собой. РИП контролирует не только наличие или отсутствие перечисленных выше в п. 2) напряжений, но и их отклонения от нормы.

Все устройства и приборы, входящие в состав пожарной сигнализации, относятся к электроприёмникам первой категории надежности электроснабжения. Значит, при установке пожарной сигнализации необходимо реализовать систему бесперебойного электропитания. Если на объекте имеются два независимых ввода высоковольтного питания, или возможность использовать дизель-генератор, то можно разработать и применить схему автоматического ввода резерва (АВР). При отсутствии такой возможности бесперебойное питание вынужденно компенсируется резервированным электропитанием с использованием источников со встроенным или внешним низковольтным аккумулятором. В соответствии с СП 513130-2009 емкость аккумулятора подбирается из расчета вычисленного тока потребления всех (или группы) устройств пожарной сигнализации с учетом обеспечения их работы на резервном питании в дежурном режиме в течение 24 ч плюс 1 ч работы в тревожном режиме.

Также при расчете аккумуляторов необходимо учитывать температуру эксплуатации, разрядные характеристики, срок службы в буферном режиме. Для увеличения времени работы РИП в резервном режиме к РИП-24 исп.01П можно подключить дополнительные аккумуляторы (2 шт.) емкостью 17А*ч устанавливаемые в Бокс-24/17М5-Р (Бокс-24 исп.01). Данное устройство представляет собой металлический корпус с встроенными элементами защиты от перегрузок по току и переполюсовки аккумуляторов. На некоторых объектах, где предъявляются особые требования к надежности работы пожарной сигнализации можно применить РИП-12 RS, РИП-12 исп.51, РИП-12 исп.16, РИП-24 исп.50, РИП-24 исп.51, которые в процессе работы (постоянно) проводят измерения напряжения в сети, напряжения на аккумуляторе, выходного напряжения и выходного тока и передают измеренные значения (по запросу) на пульт С2000M или АРМ «Орион Про». В этом случае, без прокладки дополнительных проводов для мониторинга, на пульте С2000M или компьютере с АРМ «Орион Про» можно получить сообщения: «Авария сети», «Перегрузка источника питания», «Неисправность зарядного устройства», Неисправность источника питания», «Неисправность батареи», «Взлом корпуса источника», «Отключение выходного напряжения».

Также на объектах можно использовать источники питания, имеющие дополнительные положительные качества.

  • встроенный термодатчик для контроля температуры внутри корпуса и управления процессом заряда АБ;
  • проверка состояния АБ тестовой нагрузкой;
  • контроль исправности зарядного устройства

или РИП-12 исп.06, РИП-24 исп.06:

  • индивидуальный контроль напряжений на каждой из двух установленных АБ;
  • встроенный двухполюсный выключатель сетевого напряжения — автомат защиты;
  • длительное время резервирования.

Упростить задачу размещения на объекте приборов пожарной сигнализации может применение Шкафов пожарной сигнализации. В настоящее время выпускаются два шкафа: «ШПС», в котором можно разместить до 5 приборов типа С2000-КДЛ, С2000-4 и др., с корпусами для монтажа на DIN- рейку, и «ШПС-24», вмещающем до 6 приборов различных типов и дополнительные блоки (типа «УК-ВК», «БЗЛ» и пр.).
В состав шкафов входят:

  • плата МИП-12-3А RS с выходным напряжением 12В и током 3А для «ШПС-12»;
  • или плата МИП-24-2А RS с выходным напряжением 24В и током 2А для «ШПС-24»;
  • блок коммутационный, позволяющий подключить к выходу РИП до 6-ти независимых потребителей (приборов), включая внешние устройства – С2000М, С2000-БИ и т.п. Этот блок также имеет 6 выходов для подключения приборов к интерфейсу RS-485;
  • распределительные шины сетевого напряжения для подключения, при необходимости, устройств с питанием от 220В.

В шкафах имеется возможность установки двух аккумуляторов 12 В емкостью 17 А*ч. В цепи сетевого напряжения предусмотрен автоматический выключатель.

Если вы хотите подробно разобраться в ИСО Орион производства BOLID, приглашаем вас на наши курсы обучения. Мы являемся аккредитованным партнером ЗАО НВП «БОЛИД».

ПИТАНИЕ ПОЖАРНОЙ СИГНАЛИЗАЦИИ

Электропитание пожарной сигнализации должно обеспечивать непрерывную и полнофункциональную работу всех устройств, входящих в систему, а именно:

  • приемно-контрольный прибор;
  • пожарные извещатели и сигнально пусковые устройства;
  • устройства оповещения;
  • диспетчерские пульты управления;
  • средства централизованной системы автоматического пожаротушения и т.п.

Данный список может быть дополнен устройствами системы тревожной сигнализации и СКУД. Как правило, если на объекте планируется установить все три системы, они интегрируются. Это оптимально с точки зрения удешевления монтажных работ, а в дальнейшем упрощения управления и обслуживания.

Требования к организации питания систем пожарной сигнализации.

К оборудованию энергообеспечения пожарной сигнализации предъявляются ужесточенные требования, регламентируемые различными нормативными актами. В частности — СП5.13130-2009. Согласно этим нормативам устройства, входящие в состав системы, причислены к первой категории надежности электрооборудования.

Соответственно, они должны подключаться к двум линиям энергоснабжения. Это могут быть два независимых источника переменного тока. Либо, если техническая возможность отсутствует, одна внешняя линия переменного тока и одна резервная, которая представляет собой устройства бесперебойной подачи электропитания с аккумуляторными батареями (постоянного тока) соответствующей емкости, установленные на объекте.

Резервный блок питания пожарной сигнализации должен обеспечить работоспособность всех устройств в «нормальном» (дежурном) режиме на протяжении 24 часов. И ещё 3 часа в режиме тревоги, с максимальным потреблением электроэнергии. Именно на эти данные необходимо ориентироваться при расчёте емкости источника резервного питания.

Немаловажным является выбор местоположения источника питания для пожарной сигнализации. Желательно чтобы он располагался в геометрическом центре системы. В этом случае длина коммутационных и питающих кабельных сетей будет минимальной.

При увеличении протяжённости линий энергоснабжения будет возрастать показатель их сопротивления, пропорционально увеличивая потерю мощности (падение напряжения) в проводах. Для предотвращения такого эффекта прокладку длинных цепей питания производят кабелем и проводами большого сечения.

В случае если объект имеет большую площадь, а система безопасности сложную многоуровневую структуру, наиболее целесообразно разделить ее на локальные подсистемы, каждая из которых комплектуется отдельным блоком питания для пожарной сигнализации.

ТИПЫ БЛОКОВ ПИТАНИЯ

В настоящее время существует два основных вида источников резервного электропитания:

  • импульсные;
  • линейные.

Особенности и принципы их работы подробно рассмотрены в этой статье. Здесь же приведем таблицу, в которой сравниваются их основные преимущества и недостатки.

Характеристика Импульсный Линейный
Сложность.* Сложная схемотехника, при поломке ремонт будет более продолжительный, высока вероятность нереемонтопригодности. Имеет более простую конструкцию, более ремонтопригоден, однако процесс ремонта быть отменен из-за высокой стоимости необходимых запчастей.
Надежность. Более надежен, высокая степень интеграции элементной базы позволяет встроить в один корпус несколько типов защит. Менее надежный и долговечный (при прочих равных условиях).
Помехозащищённость. Генерирует мощные импульсы и затухающие колебания в трансформаторных обмотках. Бюджетные модели могут стать серьезным источником паразитарного излучения. Электромагнитных помех практически не излучают.
КПД 98% 50% — основные потери связаны с работой сетевого трансформатора и аналогового стабилизатора.
Стоимость. Благодаря автоматизации и удешевлению производства ключевых транзисторов с высокой мощностью стоимость импульсных БП ниже, чем линейных сопоставимой мощности. К тому же чем больше выходная мощность, тем больше разница в стоимости (в пользу ИБП). Несмотря на более простую конструкцию, стоит дороже, так как имеет материалоемкие компоненты из цветных металлов: большое количество меди на обмотках трансформаторов, радиаторы из алюминия.
Габариты и вес. При одинаковых размерах имеет значительно меньший вес. Большой вес и габариты за счет применения мощных низкочастотных (линейных) трансформаторов.
Требования к сетевому напряжению. Успешно функционирует в широком диапазоне входного напряжения. К примеру, нижний порог большинства моделей составляет 90-110 В. Более критичен к изменениям напряжения сети.

* — сложность внутренней структуры устройства, как правило, не слишком волнует конечного пользователя. При выходе из строя оборудования ремонт будут все равно осуществлять специализированные фирмы.

ХАРАКТЕРИСТИКИ И ВЫБОР БЛОКА ПИТАНИЯ

При выборе источника резервного питания для пожарной сигнализации следует обратить внимание на следующие параметры:

Выходное напряжение.

Зависит от того какое оборудование установлено на объекте. Большинство устройств для пожарной сигнализации рассчитаны на напряжение питания 12В. Качественная аппаратура сохраняет работоспособность в более широком диапазоне 9,5-15В. Источник питания должен обеспечить стабильное выходное напряжение независимо от подключенной нагрузки.

Выходной ток.

Подбирать данную величину необходимо исходя из суммы токов потребления всех устройств используемых в системе. Причем для каждого из них следует учитывать максимальное паспортное значение.

Диапазон изменения сетевого напряжения.

Отечественная система энергоснабжения не может похвастать строгим соблюдением электрических параметров сети. Поэтому бесперебойное питание пожарной сигнализации должна обеспечивать приемлемые исходящие параметры при значительных колебаниях характеристик поступающего тока.

В соответствии с ГОСТ Р 53325-2009 рабочий диапазон должен составлять 85-110% от величины номинальных характеристик.

Расчет параметров источника питания для пожарной сигнализации.

В большинстве случаев пожарная сигнализация на объекте совмещается с системой оповещения и управления эвакуацией людей при пожаре. Следовательно, источник бесперебойного питания для пожарной сигнализации должен быть рассчитан и на обслуживание АПС на протяжении 24 часов и СОУЭ на протяжении 3 часов в режиме тревоги.

Для примера рассмотрим расчет блока бесперебойного питания для пожарной сигнализации. Кстати, при проектровании системы пожарной сигнализации такие расчеты обязательны. Здесь все достаточно просто:

1. Определяем суммарное потребление тока всех устройств I=I1+I2+. In;

2. Рассчитываем емкость АКБ Q=I*t.

Где:

  • I — суммарный ток потребления (А);
  • In — ток для каждого устройства;
  • Q — требуемая емкость аккумулятора;
  • t — время работы в режиме резерва.

Очевидно, что для расчета дежурного режима берем все устройства, работающие в режиме охраны, а для «тревоги» добавляем оборудование, включающееся в состоянии «пожар». Соответственно требуемое время будет 24 часа и 3 час.

Надо отметить, что при использовании приемно контрольных приборов со встроенным источником напряжения нужно учитывать внешние подключаемые устройства. Пожарные извещатели в этом случае питаются от приборного блока, который обеспечивает их работу в резервном режиме.

После этого остается выбрать блок бесперебойного питания, обеспечивающий требуемый ток и поддерживающий (это важно!) аккумулятор нужной емкости.

© 2014 — 2021 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов