Современные способы защиты информации
Современные способы защиты информации

Аналитики Zecurion провели более 100 интервью с топ-менеджерами компаний и специалистами по кибербезопасности и изучили реальные случаи выявления преднамеренных и случайных утечек корпоративной информации. Выяснилось, что лишь 8% организаций не страдают от утечек данных, а в 30% компаний крупного и среднего бизнеса фиксируют в среднем по две попытки в месяц похитить ценную информацию, потеря которой сказывается на финансовой стабильности компании. Это подтверждает и максимальный размер ущерба в $30 млн, который понесла российская компания от утечки конфиденциальных данных[5].
В современном мире с большими объёмами информации сталкиваются не только крупные компании, но и рядовые пользователи. Очень часто необходимо производить обмен конфиденциальной информацией с небезопасных компьютеров и по открытым каналам связи с помощью бесплатных почтовых сервисов, таких как gmail, mail.ru и др.
Ни для кого не секрет, что эти сервисы и протоколы безопасности привлекают внимание злоумышленников. В результате уязвимостей в этих протоколах почтовая переписка даже известных политиков может быть открыта вниманию общественности.
На основе исследований случаев воздействия на информацию и несанкционированного доступа к ней можно составить классификацию угроз безопасности, см рис.1.

Рис. 1. Виды угроз информационной безопасности
Последствиями выполнения угроз безопасности может быть следующее:
1) Разрушение информации
3) Доступ к информации третьих лиц
Рассмотрим, на каких этапах может быть получен несанкционированный доступ к информации.
Для этого проанализируем пример обмена информацией между пользователями, см рис. 2.

Рис. 2. Обмен информацией
П1, П2 – пользователи
У1,У2 – устройства для работы с информацией
Канал передачи – технический канал для обмена информацией.
1) На первом этапе первый пользователь вводит информацию в устройство для её передачи.
На данном этапе получить несанкционированный доступ к информации могут третьи лица следующими способами:
— путём фотографирования клавиатуры на камеру, детектирующую тепловое излучение
— с помощью антенны из соседней комнаты, работающей в паре с анализатором спектра
— с помощью вирусов документирующих нажатые клавиши
Способы защиты: оснащение помещений генераторами шума, выполнение требований безопасности в помещении, использование актуальных антивирусов.
2) На устройстве передачи могут быть установлены средства для защиты информации, различают следующие типы:
— программные (truecrypt, bitlocker)
— аппаратные (datashur, samurai)
— программно-аппаратные (shipka, key_p1, rutoken)
Программные средства позволяют осуществлять аутентификацию пользователей на ПК, шифровать информацию. Существуют аппаратные решения, которые осуществляют автоматическое шифрование информации на съёмные носители после процедуры аутентификации. Программно-аппаратный комплекс устройств повышает безопасность, но также требует аутентификацию.
Аутентификация – процедура проверки подлинности входящего в систему объекта, результатом обычно является авторизация, т.е. предоставление субъекту определенных прав доступа к ресурсам системы.
Процедура аутентификации должна быть максимально защищена, т.к. утечка данных для аутентификации является очень критичной для безопасности.
Существует достаточно много методов аутентификации:
· С помощью PIN кода или пароля
· С помощью одноразовых паролей
· Биометрическая, которая подразделяется на большое количество разных методов аутентификации (отпечаток пальца, геометрия лица, геометрия руки, радужная оболочка глаза, голос, рисунок вен, почерк и т.д.)
· С помощью смарт-карты, USB ключа
· По цифровому сертификату
Работы по созданию новых методов по обеспечению авторизации продолжаются и сегодня, существует и разные экзотические варианты, которые в будущем могут найти своё применение. Например, для прохождения аутентификации может потребоваться правильно расставить фигуры на шахматном поле в соответствии с заданной комбинацией или ввести своё число из большой строки цифр (например, число формируется первой и последней цифрой).
3) На этапе передачи информации по оптоволоконной линии, на съёмных носителях, по радиоканалу или другими способами информация может быть модифицирована, получена третьими лицами или повреждена.
Способы защиты: шифрование передаваемой информации, экранирование линий передачи информации, добавление элементов контроля передаваемых данных.
4) На этапе приёма информации устройством второго пользователя может оказаться, что отправленная первым пользователем информация была изменена или модифицирована, а также повреждена.
Способы защиты: передаваемая информация должна быть зашифрована, для контроля принимаемых данных и проверки их принадлежности отправителю должна быть использована электронно-цифровая подпись файлов, которая позволит не только провести идентификацию отправителя, но и проверить целостность документа.
5) Факторы риска утечки информации и способы защиты на этапе чтения полученной информации вторым пользователем аналогичны этапу 1, за исключением того, что вирусы следят за файлами пользователя, а камера может быть и обычной направленной на монитор.
Перейдём к рассмотрению методов защиты информации, реализованных в новом криптографическом устройстве, вышедшем на российский рынок в конце 2014 года.
Устройство называется Key_P1 Multiclet (допустимое название Ключ_П1), выполнено в виде гаджета с разъёмом USB для подключения к ПК и разъёмами для подключения к устройству USB или SD накопителей. Устройство принадлежит к типу программно-аппаратных, разработано и производится в городе Екатеринбург. На рис. 3 изображена схема подключения устройства в системе защиты информации.



Рис. 3. Система работы устройства
Что нового реализовано в данном устройстве защиты информации. Устройство совмещает в себе функционал аппаратных и программных средств.
1) Шифрование информации на накопителях
Шифрование на накопителях информации осуществляется по секторам. Для шифрования на накопителях применяется 1024 ключа, т.е. один файл в зависимости от размера может быть зашифрован несколькими сотнями ключей.
2) Шифрование информации на ПК
Шифрование информации, как на ПК, так и на накопителях может осуществляться при помощи синхронных ключей. Это ключи, для которых жёстко установлены алгоритмы формирования на каждом устройстве. Два пользователей, которые хотят обменяться информацией в разных уголках планеты, могут обменяться номером алгоритма для формирования ключа и фразой. В результате пользователи создадут на своих устройствах одинаковые ключи и смогут быстро и просто обмениваться защищенной информацией.
3) Защита от шпионских устройств
Ни для кого, ни секрет, что в интернете можно недорого купить устройство в виде флешки, которое сможет незаметно для пользователя сыграть в операционной системе роль клавиатуры и мышки и выполнить заданный сценарий (скопировать информацию на накопитель, открыть удаленный доступ к компьютеру жертвы и др.). Устройство Key_P1, разработанное компанией Мультиклет позволяет заблокировать данную вредоносную аппаратуру, выполнив так называемую функцию аппаратного фильтра между ПК и накопителем.
4) Режим «только чтение»
Устройство позволяет установить режим «только чтение» при работе с накопителями, таким образом, например в крупной компании, без разрешения администратора безопасности никакая информации с рабочего ПК не будет подвергнута утечке, а также гарантирует защиту флешки от вредоносных программ на ПК. В текущей реализации устройство должно работать в связке с ПО, блокирующим остальные порты USB. Схема работы данного режима приведена на рис 4.

Рис. 4. Режим «только чтение»
5) Режим «только запись»
Данный режим работы устройства обеспечивает защиту ПК пользователя от возможных вирусов и других вредоносных устройств. Т.е. пользователь не видит содержимое флешки, но может копировать свои данные через устройство Key_P1, которое в свою очередь разместить эти данные в корневом каталоге на съёмном накопителе. Данная функция может быть полезна для съёма информации с дорогостоящего поверенного оборудования, а также для повседневной работы на ПК. Схема работы данного режима приведена на рис 5.

Рис. 5. Режим «только запись»
В заключение обзора наиболее интересных функций отечественного криптоустройства отметим факт того, что разработчики сделали шаг по упрощению работы, поскольку установка программного обеспечения на ПК не требуется, и привязки к конкретному ПК также нет.
По мнению автора данной статьи, устройство для защиты информации, которое станет массовым и «народным» должно обладать следующими чертами:
· Простота и удобство работы
В заключение отметим, что с каждым годом увеличивается количество утечек информации и всвязи с этим фактом растёт и количество устройств по обеспечению информационной безопасности. Серьёзные усилия по защите информации во всём мире начали прикладывать более 20 лет назад.
Существует даже международный день защиты информации, который был учрежден в 1988 году после первой эпидемии сетевого червя, написанного Робертом Моррисом, и отмечается 30 ноября.
В качестве примера защиты информации хотелось бы показательным фактом истории, которому уже много лет, но актуальность он наверно не потеряет никогда.
Двести лет назад Наполеон проигрывал англичанам Битву при Ватерлоо. По легенде, за сражением внимательно наблюдали Натан и Якоб Ротшильды. Кроме финансовых забот, Ротшильды могли позволить себе лишь одно хобби — почтовых голубей. После битвы голуби были немедленно выпущены с шифрованными инструкциями, привязанными к лапкам. Но Ротшильды не хотели рисковать и, едва убедившись, что Наполеон проигрывает сражение, Натан, загоняя дорогих лошадей, сам мчится в Лондон.Утром Натан Ротшильд явился на Лондонскую биржу. Он был единственным в Лондоне, кто знал о поражении Наполеона. Сокрушаясь по поводу успехов Наполеона, он немедленно приступил к массовой продаже своих акций. Все остальные биржевики сразу же последовали его примеру, так как решили, что сражение проиграли англичане. Английские, австрийские и прусские ценные бумаги дешевели с каждой минутой и: оптом скупались агентами Ротшильда. О том, что Наполеон проиграл битву, на бирже узнали лишь через день. Многие держатели ценных бумаг покончили с собой, а Натан заработал 40 миллионов фунтов стерлингов. Реальная информация, полученная раньше других, позволила Ротшильдам вести беспроигрышную игру на бирже. Ротшильды не только придумали знаменитую фразу «Кто владеет информацией, тот владеет миром», они подготовили все, чтобы информация попадала в первую очередь к ним.»[4]
Пример показателен тем, что информацию получили адресаты, и дошла она в неискаженном виде, понятном только тем, кому она была направлена.
Данная работа получила награду «Лучший доклад» по итогам конференции «Информационные технологии, телекоммуникации и системы управления», УрФУ, ИРИТ-РтФ 15 декабря 2014 года
Рецензенты:
Шабунин С.Н., д.т.н., профессор, первый заместитель директора ФГАОУ ВПО «УрФУ имени первого Президента России Б.Н.Ельцина» ИРИТ-РТФ, г.Екатеринбург;
Зырянов Б.А., д.т.н., генеральный директор ОАО Мультиклет, г.Екатеринбург.
Способы защиты информации
ИБ-аутсорсинг
на базе DLP-системы
Д анные в компьютерных системах подвержены риску утраты из-за неисправности или уничтожения оборудования, а также риску хищения. Способы защиты информации включают использование аппаратных средств и устройств, а также внедрение специализированных технических средств и программного обеспечения.
Способы неправомерного доступа к информации
Залогом успешной борьбы с несанкционированным доступом к информации и перехватом данных служит четкое представление о каналах утечки информации.
Интегральные схемы, на которых основана работа компьютеров, создают высокочастотные изменения уровня напряжения и токов. Колебания распространяются по проводам и могут не только трансформироваться в доступную для понимания форму, но и перехватываться специальными устройствами. В компьютер или монитор могут устанавливаться устройства для перехвата информации, которая выводится на монитор или вводится с клавиатуры. Перехват возможен и при передаче информации по внешним каналам связи, например, по телефонной линии.
Методы защиты
На практике используют несколько групп методов защиты, в том числе:
- препятствие на пути предполагаемого похитителя, которое создают физическими и программными средствами;
- управление, или оказание воздействия на элементы защищаемой системы;
- маскировка, или преобразование данных, обычно – криптографическими способами;
- регламентация, или разработка нормативно-правовых актов и набора мер, направленных на то, чтобы побудить пользователей, взаимодействующих с базами данных, к должному поведению;
- принуждение, или создание таких условий, при которых пользователь будет вынужден соблюдать правила обращения с данными;
- побуждение, или создание условий, которые мотивируют пользователей к должному поведению.
Каждый из методов защиты информации реализуется при помощи различных категорий средств. Основные средства – организационные и технические.
Регламент по обеспечению информационной безопасности – внутренний документ организации, который учитывает особенности бизнес-процессов и информационной инфраструктуры, а также архитектуру системы.
Организационные средства защиты информации
Разработка комплекса организационных средств защиты информации должна входить в компетенцию службы безопасности.
Чаще всего специалисты по безопасности:
- разрабатывают внутреннюю документацию, которая устанавливает правила работы с компьютерной техникой и конфиденциальной информацией;
- проводят инструктаж и периодические проверки персонала; инициируют подписание дополнительных соглашений к трудовым договорам, где указана ответственность за разглашение или неправомерное использование сведений, ставших известных по работе;
- разграничивают зоны ответственности, чтобы исключить ситуации, когда массивы наиболее важных данных находятся в распоряжении одного из сотрудников; организуют работу в общих программах документооборота и следят, чтобы критически важные файлы не хранились вне сетевых дисков;
- внедряют программные продукты, которые защищают данные от копирования или уничтожения любым пользователем, в том числе топ-менеджментом организации;
- составляют планы восстановления системы на случай выхода из строя по любым причинам.
Если в компании нет выделенной ИБ-службы, выходом станет приглашение специалиста по безопасности на аутсорсинг. Удаленный сотрудник сможет провести аудит ИТ-инфраструктуры компании и дать рекомендации по ее защите от внешних и внутренних угроз. Также аутсорсинг в ИБ предполагает использование специальных программ для защиты корпоративной информации.
Что такое ИБ-аутсорсинг и как он работает? Читать.
Технические средства защиты информации
Группа технических средств защиты информации совмещает аппаратные и программные средства. Основные:
- резервное копирование и удаленное хранение наиболее важных массивов данных в компьютерной системе – на регулярной основе;
- дублирование и резервирование всех подсистем сетей, которые имеют значение для сохранности данных;
- создание возможности перераспределять ресурсы сети в случаях нарушения работоспособности отдельных элементов;
- обеспечение возможности использовать резервные системы электропитания;
- обеспечение безопасности от пожара или повреждения оборудования водой;
- установка программного обеспечения, которое обеспечивает защиту баз данных и другой информации от несанкционированного доступа.
В комплекс технических мер входят и меры по обеспечению физической недоступности объектов компьютерных сетей, например, такие практические способы, как оборудование помещения камерами и сигнализацией.
Аутентификация и идентификация
Чтобы исключить неправомерный доступ к информации применяют такие способы, как идентификация и аутентификация.
Эти средства направлены на то, чтобы предоставить или, наоборот, запретить допуск к данным. Подлинность, как правила, определяется тремя способами: программой, аппаратом, человеком. При этом объектом аутентификации может быть не только человек, но и техническое средство (компьютер, монитор, носители) или данные. Простейший способ защиты – пароль.
ПОПРОБУЙТЕ «СЁРЧИНФОРМ КИБ»!
Полнофункциональное ПО без ограничений по пользователям и функциональности.
Методы и средства обеспечения информационной безопасности
К методам и средствам защиты информации относят правовые, организационно-технические и экономические мероприятия информационной защиты и меры защиты информации (правовая защита информации, техническая защита информации, защита экономической информации и т.д.).
Они могут представлять отдельные файлы с различной информацией, коллекции файлов, программы и базы данных. В зависимости от этого к ним применяются различные меры, способствующие обеспечению безопасности информационных ресурсов. К основным программно-техническим мерам, применение которых позволяет решать проблемы обеспечения безопасности информационных ресурсов, относят: аутентификацию пользователя и установление его идентичности; управление доступом к базе данных; поддержание целостности данных; протоколирование и аудит; защиту коммуникаций между клиентом и сервером; отражение угроз, специфичных для СУБД и др.
В целях защиты информации в базах данных важнейшими являются следующие аспекты информационной безопасности:
- доступность — возможность получить некоторую требуемую информационную услугу;
- целостность — непротиворечивость информации, ее защищённость от разрушения и несанкционированного изменения;
- конфиденциальность — защита от несанкционированного прочтения.
Эти аспекты являются основополагающими для любого программно-технического обеспечения, предназначенного для создания условий безопасного функционирования данных в компьютерах и компьютерных информационных сетях.
Контроль доступа представляет собой процесс защиты данных и программ от их использования объектами, не имеющими на это права.
Одним из наиболее известных способов защиты информации является ее кодирование (шифрование, криптография).
Криптография — это система изменения информации (кодирования, шифрования) с целью ее защиты от несанкционированных воздействий, а также обеспечения достоверности передаваемых данных.
Код характеризуется: длиной — числом знаков, используемых при кодировании, и структурой — порядком расположения символов, обозначающих классификационный признак.
Средством кодирования служит таблица соответствия. Примером такой таблицы для перевода алфавитно-цифровой информации в компьютерные коды является кодовая таблица ASCII .
Для шифрования информации все чаще используют криптографические методы ее защиты.
Криптографические методы защиты информации содержат комплекс (совокупность) алгоритмов и процедур шифрования и кодирования информации, используемых для преобразования смыслового содержания передаваемых в информационных сетях данных. Они подразумевают создание и применение специальных секретных ключей пользователей.
Общие методы криптографии существуют давно. Она считается мощным средством обеспечения конфиденциальности и контроля целостности информации. Пока альтернативы методам криптографии нет. И хотя криптография не спасает от физических воздействий, в остальных случаях она служит надежным средством защиты данных.
Стойкость криптоалгоритма зависит от сложности методов преобразования. Главным критерием стойкости любого шифра или кода являются имеющиеся вычислительные мощности и время, в течение которого можно их расшифровать. Если это время равняется нескольким годам, то стойкость таких алгоритмов является вполне приемлемой и более чем достаточной для большинства организаций и личностей. Если использовать 256- и более разрядные ключи, то уровень надежности защиты данных составит десятки и сотни лет работы суперкомпьютера. При этом для коммерческого применения достаточно 40-, 44-разрядных ключей.
Для кодирования ЭИР, с целью удовлетворения требованиям обеспечения безопасности данных от несанкционированных воздействий на них, используется электронная цифровая подпись (ЭЦП).
Цифровая подпись для сообщения представляет последовательность символов, зависящих от самого сообщения и от некоторого секретного, известного только подписывающему субъекту, ключа.
Она должна легко проверяться и позволять решать три следующие задачи:
- осуществлять аутентификацию источника сообщения,
- устанавливать целостность сообщения,
- обеспечивать невозможность отказа от факта подписи конкретного сообщения.
Первый отечественный стандарт ЭЦП появился в 1994 году. Вопросами использования ЭЦП в России занимается Федеральное агентство по информационным технологиям (ФАИТ).
Существующий в мире опыт свидетельствует, что строить системы безопасности из отдельных продуктов неэффективно. Поэтому отмечается общая потребность в комплексных решениях информационной безопасности и их сопровождения. При этом специалисты отмечают, что наиболее эффективные меры защиты кроются не в технических средствах, а в применении различных организационных и административных мер, регламентов, инструкций и в обучении персонала.
Технические мероприятия базируются на применении следующих средств и систем: охранной и пожарной сигнализации; контроля и управления доступом; видеонаблюдения и защиты периметров объектов; защиты информации; контроля состояния окружающей среды и технологического оборудования, систем безопасности, перемещения людей, транспорта и грузов; учета рабочего времени персонала и времени присутствия на объектах различных посетителей.
Для комплексного обеспечения безопасности объекты оборудуются системами связи, диспетчеризации, оповещения, контроля и управления доступом; охранными, пожарными, телевизионными и инженерными устройствами и системами; охранной, пожарной сигнализацией, противопожарной автоматикой и др.
Биометрические методы защиты информации. Понятие «биометрия» определяет раздел биологии, занимающийся количественными биологическими экспериментами с привлечением методов математической статистики.
Биометрия представляет собой совокупность автоматизированных методов и средств идентификации человека, основанных на его физиологических или поведенческих характеристик. Биометрическая идентификация позволяет идентифицировать индивида по присущим ему специфическим биометрическим признакам, то есть его статическими (отпечаткам пальца, роговице глаза, генетическому коду, запаху и др.) и динамическими (голосу, почерку, поведению и др.) характеристиками.
Биометрическая идентификация считается одним из наиболее надежных способов. Уникальные биологические, физиологические и поведенческие характеристики, индивидуальные для каждого человека, называют биологическим кодом человека.
Первые биометрические системы использовали рисунок (отпечаток) пальца. Примерно одну тысячу лет до н.э. в Китае и Вавилоне знали об уникальности отпечатков пальцев. Их ставили под юридическими документами. Однако дактилоскопию стали применять в Англии с 1897 года, а в США — с 1903 года.
Считыватели обеспечивают считывание идентификационного кода и передачу его в контроллер. Они преобразуют уникальный код пользователя в код стандартного формата, передаваемый контроллеру для принятия управленческого решения. Считыватели бывают контактные и бесконтактные. Они могут фиксировать время прохода или открывания дверей и др. К ним относят устройства: дактилоскопии (по отпечаткам пальцев); идентификация глаз человека (идентификация рисунка радужной оболочки глаза или сканирование глазного дна); фотоидентификация (сравнение создаваемых ими цветных фотографий (банк данных) с изображением лица индивида на экране компьютера); идентификация по форме руки, генетическому коду, запаху, голосу, почерку, поведению и др.
В различных странах (в том числе в России) включают биометрические признаки в загранпаспорта и другие идентифицирующие личности документы. Преимущество биологических систем идентификации, по сравнению с традиционными (например, PI №-кодовыми, доступом по паролю), заключается в идентификации не внешних предметов, принадлежащих человеку, а самого человека. Анализируемые характеристики человека невозможно утерять, передать, забыть и крайне сложно подделать. Они практически не подвержены износу и не требуют замены или восстановления.
С помощью биометрических систем осуществляются:
- ограничение доступа к информации и обеспечение персональной ответственности за ее сохранность;
- обеспечение допуска сертифицированных специалистов;
- предотвращение проникновения злоумышленников на охраняемые территории и в помещения вследствие подделки и (или) кражи документов (карт, паролей);
- организация учета доступа и посещаемости сотрудников, а также решается ряд других проблем.
Самой популярной считается аутентификация по отпечаткам пальцев, которые, в отличие от пароля, нельзя забыть, потерять, и заменить. Однако в целях повышения надежности аутентификации и защиты ценной информации лучше использовать комбинацию биометрических признаков. Удачным считается одновременное использование двухфакторной аутентификации пользователя, включающее оптический сканер отпечатков пальцев и картридер для смарт-карты, в которой в защищенном виде хранятся те же отпечатки пальцев.
К новым биометрическим технологиям следует отнести трехмерную идентификацию личности, использующую трехмерные сканеры идентификации личности с параллаксным методом регистрации образов объектов и телевизионные системы регистрации изображений со сверхбольшим угловым полем зрения. Предполагается, что подобные системы будут применяться для идентификации личностей, трехмерные образы которых войдут в состав удостоверений личности и других документов. Сканирование с помощью миллиметровых волн — быстрый метод, позволяющий за две-четыре секунды сформировать трехмерное топографическое изображение, которое можно поворачивать на экране монитора для досмотра предметов, находящихся в одежде и на теле человека. С этой же целью используют и рентгеновские аппараты. Дополнительным преимуществом миллиметровых волн в сравнении с рентгеном является отсутствие радиации — этот вид просвечивания безвреден, а создаваемое им изображение генерируется энергией, отраженной от тела человека. Энергия, излучаемая миллиметровыми волнами, в 10 000 раз слабее излучения от сотового телефона.
Защита информации в информационных компьютерных сетях осуществляется с помощью специальных программных, технических и программно-технических средств.
С целью защиты сетей и контроля доступа в них используют:
- фильтры пакетов, запрещающие установление соединений,
пересекающих границы защищаемой сети; - фильтрующие маршрутизаторы, реализующие алгоритмы
анализа адресов отправления и назначения пакетов в сети; - шлюзы прикладных программ, проверяющие права доступа к
программам.
В качестве устройства, препятствующего получению злоумышленником доступа к информации, используют Firewalls (рус. «огненная стена» или «защитный барьер» — брандмауэр). Такое устройство располагают между внутренней локальной сетью организации и Интернетом. Оно ограничивает трафик, пресекает попытки несанкционированного доступа к внутренним ресурсам организации. Это внешняя защита. Современные брандмауэры могут «отсекать» от пользователей корпоративных сетей незаконную и нежелательную для них корреспонденцию, передаваемую по электронной почте. При этом ограничивается возможность получении избыточной информации и так называемого «мусора» (спама).
Считается, что спам появился в 1978 г., а значительный его рост наблюдается в 2003 г. Сложно сказать, какой почты приходит больше: полезной или бестолковой. Выпускается много ПО, предназначенного для борьбы с ним, но единого эффективного средства пока нет.
Техническим устройством, способным эффективно осуществлять защиту в компьютерных сетях, является маршрутизатор. Он осуществляет фильтрацию пакетов передаваемых данных. В результате появляется возможность запретить доступ некоторым пользователям к определенному «хосту», программно осуществлять детальный контроль адресов отправителей и получателей. Также можно ограничить доступ всем или определенным категориям пользователей к различным серверам, например ведущим распространение противоправной или антисоциальной информации (пропаганда секса, насилия и т.п.).
Защита может осуществляться не только в глобальной сети или локальной сети организации, но и отдельных компьютеров. Для этой цели создаются специальные программно-аппаратные комплексы.
Защита информации вызывает необходимость системного подхода, т.е. здесь нельзя ограничиваться отдельными мероприятиями. Системный подход к защите информации требует, чтобы средства и действия, используемые для обеспечения информационной безопасности — организационные, физические и программно-технические — рассматривались как единый комплекс взаимосвязанных взаимодополняющих и взаимодействующих мер. Один из основных принципов системного подхода к защите информации — принцип «разумной достаточности», суть которого: стопроцентной защиты не существует ни при каких обстоятельствах, поэтому стремиться стоит не к теоретически максимально достижимому уровню защиты, а к минимально необходимому в данных конкретных условиях и при данном уровне возможной угрозы.
ИБ: средства защиты
Средства защиты — разработка таких средств и их усовершенствование есть основная цель сферы ИБ. В некотором роде рчеь идет не о борьбе с результатом вредоносного воздействия, а в первую очередь о предотвращении. На фоне возрастающей зависимости бизнеса от IT продолжается рост интенсивности действий злоумышленников и постоянное совершенствование используемых ими методов атак на корпоративные информационные системы и сети. В то же время, несмотря на разнообразие технологий и решений, используемых для защиты от действий злоумышленников, рынок информационной безопасности можно условно разделить на несколько частей: межсетевые экраны, антивирусы, средства криптографии и AAA (средства аутентификации, авторизации и администрирования).
Каталог решений и проектов ИБ — Антивирусы доступны на TAdviser
Содержание
Межсетевые экраны
Неотъемлемым элементом защиты сети крупной организации от вторжения злоумышленников является корпоративный межсетевой экран (МЭ). Предложение на этом рынке представлено десятками компаний, готовых предоставить решения для любых сред: настольных систем, малого и домашнего офиса (SOHO), среднего и малого бизнеса, телекоммуникационных компаний и т. д.
Поэтому для принятия правильного решения о выборе межсетевого экрана необходимо понимание потребностей бизнеса в обеспечении сетевой безопасности и принципов действия этих продуктов.
Межсетевой экран (firewall, брандмауэр) — это комплекс аппаратных и/или программных средств, предназначенный для контроля и фильтрации проходящего через него сетевого трафика в соответствии с заданными правилами. Основной задачей этого класса продуктов является защита компьютерных сетей (или их отдельных узлов) от несанкционированного доступа.
В общем случае, межсетевой экран использует один или несколько наборов правил для проверки сетевых пакетов входящего и/или исходящего трафика. Правила межсетевого экрана могут проверять одну или более характеристик пакетов, включая тип протокола, адрес хоста, источник, порт и т. д. Существует два основных способа создания наборов правил: «включающий» и «исключающий». Правила, созданные первым способом, позволяют проходить лишь соответствующему правилам трафику и блокируют все остальное. Правила на основе исключающего способа, напротив, пропускают весь трафик, кроме запрещенного. Включающие межсетевые экраны обычно более безопасны, чем исключающие, поскольку они существенно уменьшают риск пропуска межсетевым экраном нежелательного трафика.
Использование межсетевых экранов может быть эффективно при решении следующих задач:
- Защита и изоляция приложений, сервисов и устройств во внутренней сети от нежелательного трафика, приходящего из интернета (разделение сетей);
- Ограничение или запрет доступа к сервисам сети для определенных устройств или пользователей;
- Поддержка преобразования сетевых адресов, что позволяет использовать во внутренней сети частные IP-адреса либо автоматически присваиваемые публичные адреса.
Одна из главных тенденций на рынке межсетевых экранов — увеличение функционала и стремление к универсальности. Кроме непосредственного контроля трафика и разделения сетей функционал современных решений включает в себя:
- Глубокий анализ пропускаемого трафика (deep packet inspection);
- Шифрование трафика;
- Организацию удаленного доступа пользователей к ресурсам локальной сети (VPN);
- Аутентификацию пользователей.
Современные МЭ предоставляют возможность построения виртуальных частных сетей, которые позволяют компаниям создавать безопасные каналы передачи данных через публичные сети, предотвращая тем самым перехват и искажение передаваемой информации, а также обеспечивая контроль целостности передаваемых данных. При организации VPN-сетей могут применяться различные методы аутентификации, в том числе сертификаты PKI X.509, одноразовые пароли, протоколы RADIUS, TACACS+.
В настоящее время межсетевые экраны все чаще предлагаются не в виде отдельных решений, а как компоненты более сложных систем защиты. Потребности рынка продуктов для малых и средних предприятий и удаленных офисов послужили стимулом к созданию специализированных аппаратных устройств с функциями межсетевых экранов. Такие устройства, как правило, представляют собой выделенные серверы с предварительно установленным и сконфигурированным на них программным обеспечением межсетевого экрана, виртуальной частной сети и операционной системой.
С появлением технологий беспроводных ЛВС понятие «защищаемого периметра» теряет свое значение. В этой связи наиболее уязвимым местом корпоративной сети становятся мобильные рабочие станции. Для защиты от подобного рода угроз производители разрабатывают технологии типа Network Access Protection (Microsoft), Network Admission Control (Cisco), Total Access Protection (Check Point).
На сегодняшний день на рынке представлено значительное количество межсетевых экранов различной функциональности. Однако при выборе того или иного решения в первую очередь стоит обратить внимание на управление подобной системой. Так или иначе, качество работы межсетевого экрана напрямую зависит от качества установленного системным администратором набора правил. Кроме того, следует понимать, что межсетевой экран — не панацея от всех угроз и его использование эффективно лишь в связке с другими продуктами, среди которых самое заметное место занимают антивирусы.
Антивирусы
Компьютерные вирусы остаются в настоящее время наиболее актуальной проблемой информационной безопасности корпоративных систем.
В связи с тем, что подавляющее большинство вредоносных программ распространяется посредством электронной почты, межсетевые экраны оказываются неэффективными. В арсенале решений этого типа нет средств анализа принимаемых почтовых сообщений.
Одним из методов, применяемых системными администраторами наряду с использованием антивирусного программного обеспечения, является фильтрация сообщений, содержащих вложения определенных форматов (чаще всего, исполняемые приложения).
Современные антивирусные программы, при всем их разнообразии, используют лишь два принципиально разных метода обнаружения вредоносных программ:
- Поиск по сигнатурам;
- Эвристический анализ.
Криптографическая защита
Средства криптографической защиты информации достаточно давно и широко используются в составе популярных сетевых технологий, таких как виртуальные частные сети (VPN) или Secure Shell (SSH). Однако в целях непосредственной защиты личной или корпоративной информации применение таких решений до сих пор очень ограниченно. Так, частная и деловая переписка в большинстве случаев ведется открыто, шифрование файлов и дисков тоже мало распространено. В то же время шифрование данных — это один из главных и наиболее надежных способов предотвращения несанкционированного доступа к информации. Далее будут приведены основные сферы применения криптографических средств защиты информации, а также рассмотрены их различные виды.
Пожалуй, самая широкая сфера потенциального применения криптографических средств — разграничение доступа к конфиденциальной информации и/или сокрытие существования такой информации от нелегитимных пользователей. В масштабе корпоративной сети эта задача достаточно успешно решается средствами AAA (аутентификация, авторизация и администрирование). Однако при защите локальных устройств они чаще всего неэффективны. Особенно острой эта проблема становится в связи с увеличением числа мобильных пользователей.
К сожалению, такое качество, как мобильность, преимущества которой для современного бизнеса сложно переоценить, на практике оказывается еще и недостатком. Ноутбук, в отличие от стационарного компьютера, легко потерять, он может быть украден или выведен из строя. По данным Cnews, не менее 40% случаев утраты ноутбуков происходит вследствие их кражи. До 93% всех украденных ноутбуков уже никогда не возвращаются к владельцу.
Понятно, что вся информация, которая хранится на ноутбуке, заключена в жестком диске. Извлечь его из ноутбука в спокойной обстановке — дело пяти минут. Именно поэтому следующие средства защиты от несанкционированного доступа будут бесполезны:
- Парольная защита BIOS;
- Парольная защита операционной системы;
- Средства аутентификации, работающие на уровне приложений.
В то же время применение стойких криптографических алгоритмов, таких как DES, AES, ГОСТ 28147-89, RC4 (с длиной ключа не менее 128 бит), RSA, — надежный способ сделать информацию бесполезной для злоумышленника на многие годы. На сегодняшний день на рынке существует множество компаний, реализующих эти алгоритмы как в программных продуктах, так и в виде отдельных устройств.
Классификация методов защиты информации
Информация сегодня – важный ресурс, потеря которого чревата неприятными последствиями. Утрата конфиденциальных данных компании несет в себе угрозы финансовых потерь, поскольку полученной информацией могут воспользоваться конкуренты или злоумышленники. Для предотвращения столь нежелательных ситуаций все современные фирмы и учреждения используют методы защиты информации.
Безопасность информационных систем (ИС) – целый курс, который проходят все программисты и специалисты в области построения ИС. Однако знать виды информационных угроз и технологии защиты необходимо всем, кто работает с секретными данными.
Виды информационных угроз
Основным видом информационных угроз, для защиты от которых на каждом предприятии создается целая технология, является несанкционированный доступ злоумышленников к данным. Злоумышленники планируют заранее преступные действия, которые могут осуществляться путем прямого доступа к устройствам или путем удаленной атаки с использованием специально разработанных для кражи информации программ.

Кроме действий хакеров, фирмы нередко сталкиваются с ситуациями потери информации по причине нарушения работы программно-технических средств.
В данном случае секретные материалы не попадают в руки злоумышленников, однако утрачиваются и не подлежат восстановлению либо восстанавливаются слишком долго. Сбои в компьютерных системах могут возникать по следующим причинам:
- Потеря информации вследствие повреждения носителей – жестких дисков;
- Ошибки в работе программных средств;
- Нарушения в работе аппаратных средств из-за повреждения или износа.
Современные методы защиты информации
Технологии защиты данных основываются на применении современных методов, которые предотвращают утечку информации и ее потерю. Сегодня используется шесть основных способов защиты:
- Препятствие;
- Маскировка;
- Регламентация;
- Управление;
- Принуждение;
- Побуждение.
Все перечисленные методы нацелены на построение эффективной технологии защиты информации, при которой исключены потери по причине халатности и успешно отражаются разные виды угроз. Под препятствием понимается способ физической защиты информационных систем, благодаря которому злоумышленники не имеют возможность попасть на охраняемую территорию.
Маскировка – способы защиты информации, предусматривающие преобразование данных в форму, не пригодную для восприятия посторонними лицами. Для расшифровки требуется знание принципа.
Управление – способы защиты информации, при которых осуществляется управление над всеми компонентами информационной системы.
Регламентация – важнейший метод защиты информационных систем, предполагающий введение особых инструкций, согласно которым должны осуществляться все манипуляции с охраняемыми данными.
Принуждение – методы защиты информации, тесно связанные с регламентацией, предполагающие введение комплекса мер, при которых работники вынуждены выполнять установленные правила. Если используются способы воздействия на работников, при которых они выполняют инструкции по этическим и личностным соображениям, то речь идет о побуждении.
На видео – подробная лекция о защите информации:
Средства защиты информационных систем
Способы защиты информации предполагают использование определенного набора средств. Для предотвращения потери и утечки секретных сведений используются следующие средства:
- Физические;
- Программные и аппаратные;
- Организационные;
- Законодательные;
- Психологические.
Физические средства защиты информации предотвращают доступ посторонних лиц на охраняемую территорию. Основным и наиболее старым средством физического препятствия является установка прочных дверей, надежных замков, решеток на окна. Для усиления защиты информации используются пропускные пункты, на которых контроль доступа осуществляют люди (охранники) или специальные системы. С целью предотвращения потерь информации также целесообразна установка противопожарной системы. Физические средства используются для охраны данных как на бумажных, так и на электронных носителях.
Программные и аппаратные средства – незаменимый компонент для обеспечения безопасности современных информационных систем.
Аппаратные средства представлены устройствами, которые встраиваются в аппаратуру для обработки информации. Программные средства – программы, отражающие хакерские атаки. Также к программным средствам можно отнести программные комплексы, выполняющие восстановление утраченных сведений. При помощи комплекса аппаратуры и программ обеспечивается резервное копирование информации – для предотвращения потерь.
Организационные средства сопряжены с несколькими методами защиты: регламентацией, управлением, принуждением. К организационным средствам относится разработка должностных инструкций, беседы с работниками, комплекс мер наказания и поощрения. При эффективном использовании организационных средств работники предприятия хорошо осведомлены о технологии работы с охраняемыми сведениями, четко выполняют свои обязанности и несут ответственность за предоставление недостоверной информации, утечку или потерю данных.
Законодательные средства – комплекс нормативно-правовых актов, регулирующих деятельность людей, имеющих доступ к охраняемым сведениям и определяющих меру ответственности за утрату или кражу секретной информации.
Психологические средства – комплекс мер для создания личной заинтересованности работников в сохранности и подлинности информации. Для создания личной заинтересованности персонала руководители используют разные виды поощрений. К психологическим средствам относится и построение корпоративной культуры, при которой каждый работник чувствует себя важной частью системы и заинтересован в успехе предприятия.

Защита передаваемых электронных данных
Для обеспечения безопасности информационных систем сегодня активно используются методы шифрования и защиты электронных документов. Данные технологии позволяют осуществлять удаленную передачу данных и удаленное подтверждение подлинности.
Методы защиты информации путем шифрования (криптографические) основаны на изменении информации с помощью секретных ключей особого вида. В основе технологии криптографии электронных данных – алгоритмы преобразования, методы замены, алгебра матриц. Стойкость шифрования зависит от того, насколько сложным был алгоритм преобразования. Зашифрованные сведения надежно защищены от любых угроз, кроме физических.
Электронная цифровая подпись (ЭЦП) – параметр электронного документа, служащий для подтверждения его подлинности. Электронная цифровая подпись заменяет подпись должностного лица на бумажном документе и имеет ту же юридическую силу. ЭЦП служит для идентификации ее владельца и для подтверждения отсутствия несанкционированных преобразований. Использование ЭЦП обеспечивает не только защиту информации, но также способствует удешевлению технологии документооборота, снижает время движения документов при оформлении отчетов.
Классы безопасности информационных систем
Используемая технология защиты и степень ее эффективности определяют класс безопасности информационной системы. В международных стандартах выделяют 7 классов безопасности систем, которые объединены в 4 уровня:
- D – нулевой уровень безопасности;
- С – системы с произвольным доступом;
- В – системы с принудительным доступом;
- А – системы с верифицируемой безопасностью.
Уровню D соответствуют системы, в которых слабо развита технология защиты. При такой ситуации любое постороннее лицо имеет возможность получить доступ к сведениям.
Использование слаборазвитой технологии защиты чревато потерей или утратой сведений.
В уровне С есть следующие классы – С1 и С2. Класс безопасности С1 предполагает разделение данных и пользователей. Определенная группа пользователей имеет доступ только к определенным данным, для получения сведений необходима аутентификация – проверка подлинности пользователя путем запроса пароля. При классе безопасности С1 в системе имеются аппаратные и программные средства защиты. Системы с классом С2 дополнены мерами, гарантирующими ответственность пользователей: создается и поддерживается журнал регистрации доступа.
Уровень В включает технологии обеспечения безопасности, которые имеют классы уровня С, плюс несколько дополнительных. Класс В1 предполагает наличие политики безопасности, доверенной вычислительной базы для управления метками безопасности и принудительного управления доступом. При классе В1 специалисты осуществляют тщательный анализ и тестирование исходного кода и архитектуры.
Класс безопасности В2 характерен для многих современных систем и предполагает:
- Снабжение метками секретности всех ресурсов системы;
- Регистрацию событий, которые связаны с организацией тайных каналов обмена памятью;
- Структурирование доверенной вычислительной базы на хорошо определенные модули;
- Формальную политику безопасности;
- Высокую устойчивость систем к внешним атакам.
Класс В3 предполагает, в дополнение к классу В1, оповещение администратора о попытках нарушения политики безопасности, анализ появления тайных каналов, наличие механизмов для восстановления данных после сбоя в работе аппаратуры или программного обеспечения.
Уровень А включает один, наивысший класс безопасности – А. К данному классу относятся системы, прошедшие тестирование и получившие подтверждение соответствия формальным спецификациям верхнего уровня.
На видео – подробная лекция о безопасности информационных систем: