Защита от гамма лучей
Защита от гамма-излучения
Основным вариантом для защиты от альфа-, бета-, гамма-излучения выступает экранирование, а также использование специализированных индивидуальных защитных средств, которые обеспечат безопасность человека в опасных условиях радиации.
Различают несколько типов вредного излучения, каждый из которых имеет свою проникающую способность и, исходя из этого, особенность защиты:
- Альфа-излучение обладает небольшой проникающей способностью, поэтому для защиты от него достаточно будет использование рабочих перчаток из резины, пластиковых очков, простого респиратора.
- Бета-излучение отличается большей способностью проникать в различные материалы, поэтому для безопасности человека необходимо использовать противогаз, экраны на основе тонкого слоя алюминия и стекла.
- Гамма-излучение проникает практически в любую поверхность кроме вольфрама, свинца, чугуна.
- Для защиты от гамма- и нейтронного излучения требуется использование многослойных экранов.
Источниками радиации выступает не только радионуклиды, но и в частности прохождение флюорографического обследования, компьютерной томографии.
Чтобы понять какая защита от гамма-излучения наиболее эффективна, необходимо определиться с источником радиации.
Защита от внешнего гамма-излучения
Источниками внешнего радиационного опасного излучения выступают:
- радиоактивные вещества;
- ядерные реакторы;
- рентгеновское оборудование и т. д.
Использование источников радиации предполагает соблюдение специализированных необходимых мер защиты. Допустимые уровни облучения прописаны в нормах радиационной безопасности, которые обязательно должен знать рабочий персон и не превышать указанных данных.
Обычно для защиты от гамма-излучения целесообразно применять защитные сооружения, которые экономически выгодны и обеспечат значительное ослабление радиационного воздействия. Мощность точечного источника радиации прямо пропорциональна активности облучения, поэтому ее удается ограничить путем меньшего использования и на большем удалении.
Такой вариант защиты предусматривает возможность выполнения работ в определенный промежуток времени, который не позволит получить большую дозу облучения, так как первое свойство ионизирующего излучения — это накопление. Следовательно, чем меньше времени человек находится в зоне повышенного радиационного фона, тем меньший вред это нанесет его здоровью.
Следующий способ защиты от внешнего гамма-излучения выступает снижение его мощности при увеличении расстояния между источником изучения и объекта. Четкие указания по допустимому промежутку времени для нахождения вблизи источника излучения предъявляются рабочему персоналу, по истечению которого люди должны выводиться в безопасную зону.
При работе с источниками повышенной радиационной активности необходимо применение специализированных многослойных экранов, позволяющих существенно снизить интенсивность проникновения опасного излучения.
Отличной защитой от гамма-излучения являются материалы с большим атомным номером и высокой плотностью:
- Свинец.
- Сталь.
- Бетон.
- Свинцовое стекло.
В зависимости от мощности гамма-лучей подбирается необходимый материал для повышенной защиты здоровья людей.
Защита от гамма-излучения: свинец
Для защиты от гамма-излучения применяют чаще всего свинцовый лист. Металл способен задерживать заряженные крупные и мелкие радиационные частицы, а также комбинированные излучения.
Используется свинцовые изделия в медицине, научных институтах, лабораториях для защиты от гамма-лучей, рентгеновского излучения от специализированных приборов в поликлиниках.
Помещения для диагностики организма при помощи рентген аппаратов обязательно должны быть экранированы свинцовыми пластинами во избежание избыточного облучения как медицинского персонала, так и пациентов.
Для защиты от гамма-излучения целесообразно использовать специализированную одежду со свинцовыми прокладками:
Свинцовое стекло используется при проведении опытов с радиоактивными веществами, оно необходимо для установки в специализированном оборудовании в качестве смотрового окна.
Свинец выступает тяжелым металлом, который не взаимодействует с бета- и гамма-лучами, радиоактивными изотопами, поэтому станет эффективным для них препятствием.
Способы защиты от гамма-излучения внутри зданий
Для защиты от внутреннего облучения проводятся мероприятия по уменьшению накопления опасной радиоактивной пыли — это специализированная облицовка стен, пола, потолка, проведение регулярной влажной уборки помещений, обустройство эффективной вытяжной вентиляции.
Дополнительно требуется тщательная личная гигиена персонала, применение индивидуальных средств защиты от альфа излучения (это комбинезоны, шапочки, очки, резиновые перчатки, сапоги, респираторы либо шланговые противогазы). При надевании и снятии СИЗ, чтобы не загрязнить одежду и кожные покровы, окружающие предметы необходимо четко следовать инструкции, проводить контроль мощности дозы рентгеновского и прочего излучения.
Расчет защиты от гамма-излучения
Когда рентгеновские лучи проходят через вещество, они не полностью поглощаются материалом, а ослабляются, то есть уменьшается их интенсивность.
Величина ослабления может быть описана математическим соотношением: линейный коэффициент ослабления зависит от следующих данных:
- типа защитного материала;
- энергии падающего рентгеновского излучения.
Определить максимальную длину пробега гамма-излучения необходимо с учетом атомной массы, плотности поглощающего вещества.
Мощность дозы источников гамма-излучения может быть измерена соответствующими приборами или подсчитана математически.
После измерения мощности радиационных лучей получится правильно подобрать методы защиты от гамма-излучения, чтобы обезопасить пребывание людей вблизи с источником радиации.
Чем опасно гамма-излучение и способы защиты от него
Среди многообразия электромагнитных излучений, рядом с рентгеновскими лучами нашли себе «приют» очень короткие электромагнитные волны — это гамма-излучение. Имея ту же природу, что и свет, оно распространяется в пространстве с такой же скоростью 300 000 км/сек.
Однако ввиду его особых свойств, гамма-излучение оказывает сильнейшее отравляющее и травмирующее действие на живые организмы. Давайте выясним, что такое гамма-излучение, чем оно опасно и как защититься от него.
Чем опасно гамма-излучение
Источниками гамма-излучения являются космические лучи, взаимодействие и распад ядер атомов радиоактивных элементов и другие процессы. Приходя из далёких космических глубин или рождаясь на Земле, это излучение оказывает сильнейшее ионизирующее действие на человека.
В микромире существует закономерность, чем короче длина волны электромагнитного излучения, тем больше энергия у его квантов (порций). Поэтому можно утверждать, что гамма-излучение — это квантовый поток с очень большой энергией.

Чем же опасно гамма-излучение? Механизм разрушительного действия гамма-квантов заключается в следующем.
- Благодаря огромной проникающей способности «энергичные» гамма-кванты легко проникают в живые клетки, вызывая их повреждение и отравление.
- По пути своего движения они оставляют разрушенные ими молекулы (ионы). Эти повреждённые частицы ионизируют новую порцию молекул.
- Такая трансформация клеток вызывает сильнейшие изменения в её различных структурах. А изменившиеся или разрушенные составные части облучённых клеток разлагаются и начинают действовать как яды.
- Заключительным этапом является рождение новых, но дефектных клеток, которые не могут выполнять необходимые функции.
Опасность гамма-излучения усугубляется отсутствием у человека механизма способного ощутить это воздействие вплоть до смертельных доз.
Различные органы человека обладают индивидуальной чувствительностью к его воздействию. Наибольшую уязвимость к атаке этого излучения проявляют быстро делящиеся клетки кроветворной системы, пищеварительного тракта, лимфатических желёз, половых органов, волосяных фолликул и структуры ДНК. Проникшие в них гамма-кванты, разрушают слаженность всех процессов и приводят к многочисленным мутациям в механизме наследственности.
Особая опасность гамма-излучения заключается в его способности накапливаться в организме, а также наличие скрытого периода воздействия.
Где применяется гамма-излучение
При неконтролируемом, стихийном воздействии этого излучения последствия могут быть весьма тяжёлые. А учитывая, что оно обладает ещё и «инкубационным» периодом расплата может настигнуть через много лет и даже через поколения.
Однако пытливые умы учёных сумели найти многочисленные применения гамма-излучению:
- стерилизация некоторых продуктов, медицинских инструментов и оборудования;
- контроль за внутренним состоянием изделий (гамма-дефектоскопия);
- определение глубины скважин в геологии;
- точное измерение расстояний, преодолеваемых космическими аппаратами;
- дозированное облучение растений позволяет получать их мутации, из которых затем отбирают высокопродуктивные сорта.
Как эффективный терапевтический метод лечения гамма-излучение применяется в медицине. Эта методика носит название лучевой терапии. В ней используется особенность гамма-излучения воздействовать в первую очередь на быстро делящиеся клетки.
Этот метод применяют для лечения рака, сарком в тех случаях, когда другие методы лечения неэффективны. Дозированное и направленное облучение позволяет подавить жизнедеятельность патологических клеток опухоли.
Где ещё встречается гамма-излучение
Сейчас мы знаем, что такое гамма-излучение и осознаём сопряжённые с ним опасности. Поэтому постоянно изыскиваем новые способы как защититься от него. Но столетие назад отношение к радиоактивности было более беспечным.

Начиная с 1902 года радиоактивной глазурью покрывали предметы керамики и ювелирные украшения, с помощью подобных излучающих добавок изготавливали цветное стекло. Поэтому бережно хранимые старинные сувениры, могут являться миной замедленного действия.
Как защититься от гамма-излучения
Вся наша жизнь проходит на фоне естественных электромагнитных излучений. И вклад гамма-квантов в этот фон достаточно значителен. Однако, несмотря на их периодические всплески, вред их для живых организмов минимален. Здесь землян спасают огромные расстояния от источников этих излучений. Совсем иное — земные источники. Особую опасность несут АЭС: их ядерные реакторы, технологические контуры и другое оборудование. Организация защиты от гамма-излучения персонала на этих и других подобных объектах включает следующие мероприятия.
Защиту временем, то есть ограничением времени работы. Ликвидаторам аварии на Чернобыльской АЭС на выполнение конкретной работы давалось несколько минут. Промедление вызывало дополнительную дозу облучения и тяжёлые последствия.- Защиту расстоянием (от работающего до опасной зоны).
- Метод защиты барьером (материалом).
Для эффективной защиты от гамма-излучения используются материалы с большим атомным номером и высокой плотностью. Этим критериям удовлетворяют:
свинец;- бетон;
- свинцовое стекло;
- сталь.
Наилучшей интенсивностью поглощения γ-лучей обладает свинец. Пластинка свинца толщиной в 1 см, 5 см бетона и 10 см воды — ослабляют это излучение в два раза, однако, не являются для них непреодолимой преградой. Применение свинца в качестве защиты против воздействия гамма-излучения ограничивается его низкой температурой плавления. Поэтому в горячих зонах используют дорогие металлы:
- вольфрам;
- тантал.
Для изготовления защитной одежды сотрудников, работающих в зоне действия источников излучения или радиоактивного заражения используются специальные материалы. Его основу составляет резина, пластик или каучук со специальным наполнителем из свинца и его соединений.
В качестве средств защиты могут быть задействованы противорадиационные экраны.
Защитой от гамма-излучения является и очень осмотрительное отношение к окружающим нас предметам, кажущихся на вид вполне безобидными: водолазные часы, секстанты, датчики обледенения и т. д. Их циферблаты содержат соли радия 226, являющиеся источниками альфа и гамма-излучения.
Из всех видов радиации именно гамма-излучение обладает наибольшей проникающей способностью. В этом случае наиболее эффективным способом защиты от внешнего гамма-излучения являются специальные укрытия, а при их отсутствии — подвалы домов. Чем толще стены, тем надёжнее укрытие. Подвал многоэтажного дома способен ослабить действие радиации в 1000 раз.
К сожалению, опасность радиационного заражения может возникнуть совершенно внезапно. И облучение могут получить люди совершенно не имеющие отношения к ядерной энергетике. Надеемся, что полученная информация поможет вам сохранить своё здоровье и уберечься от угрозы дополнительного радиоактивного облучения.
Материалы для защиты от гамма-излучения
Гамма-излучение наиболее эффективно ослабляется материалами с большим атомным номером и высокой плотностью (свинец, сталь, бетон, магнетитовые и другие руды, свинцовое стекло). На АЭС в качестве материала для биологической защиты обычно используется бетон, металлические конструкции и вода. Рассмотрим некоторые материалы, получившие широкое применение в качестве защиты от гамма-излучения.
Вода используется не только как замедлитель нейтронов, но и как защитный материал от нейтронного излучения вследствие высокой плотности атомов водорода. При поглощении тепловых нейтронов ядрами водорода по реакции H(n,г)D, возникает захватное г-излучение с энергией E = 2,23 МэВ. Захватное г-излучение можно снизить, если применить борированную воду. Тепловые нейтроны поглощаются бором по реакции B(n,б)Li, а захватное излучение имеет энергию E = 0,5 МэВ. Конструктивно водяную защиту выполняют в виде заполненных водой секционных баков из стали или других материалов.
Полиэтилен (р = 0,93 г/см 3 , nн= 7,92 ·10 22 ядер/см 3 ) ? термопластичный полимер (CnH2n), является лучшим замедлителем, чем вода. Применяют в виде листов, лент, прутков и т.п. на таких участках защиты, где температура tполиэтилена меньше tразмягчения = 368 К. Необходимо учитывать высокий коэффициент его линейного расширения (в 13 раз больше, чем у железа). С повышением t полиэтилен размягчается, а затем загорается, образуя двуокись углерода и воду. Защитные свойства от г-излучения примерно такие же, как у воды. Для уменьшения захватного г-излучения в полиэтилен добавляют борсодержащие вещества.
Из других водородсодержащих веществ используют различные пластмассы (полистирол, полипропилен) и гидриды металлов.
Железо ? в виде изделий из стали и чугуна (прокат, поковка, дробь). Сталь (углеродистая и с легирующими элементами) является конструкционным материалом для изготовления узлов реакторных установок (корпус реактора, тепловая и радиационная защита, трубопроводы, различные механизмы, арматура для защиты из других материалов и т.п.). В стали сочетаются конструкционные и защитные свойства. Масса зашиты из стали от г-излучения на 30% больше массы эквивалентной свинцовой защиты, однако повышенный расход материала компенсируется лучшими конструкционными характеристиками стали. Под действием тепловых нейтронов железо, являющееся основной составной частью стали, активируется с образованием радионуклида 55 Fe (Т1/2 = 45,1 сут.), излучающего фотоны (Eг1 = 1,1 МэВ; Eг2 = 1,29 МэВ). При захвате нейтронов атомами железа возникает захватное г-излучение (Eг = 7,7 МэВ). При несовершенной конструкции реакторной установки захватное г-излучение в железных конструкциях тепловой защиты определяет выбор зашиты от излучения. Следует обращать внимание на содержание в стали марганца, тантала и кобальта, так как наведенная г-активность определяется в основном содержанием этих элементов стали. Сталь, подвергающаяся облучению нейтронами высокой плотности, должна содержать не более 0,2% марганца, а тантал и кобальт могут находиться лишь в виде следов. Захватное г-излучение и остаточную активность можно в значительной степени уменьшить, если добавить в сталь борное соединение и получить борную сталь. Бор интенсивно поглощает тепловые нейтроны, при этом образуются легко поглощаемое г-излучение (E = 0,5 МэВ) и б-частицы. Борная сталь по механическим свойствам хуже конструкционной стали, очень хрупка и трудно поддается мехобработке.
Свинец используется для защиты в виде отливок (очехлованных стальными листами), листов, дроби. Из имеющихся дешевых материалов свинец обладает наиболее высокими защитными свойствами от г-излучения. Его целесообразно использовать при необходимости ограничения размеров и массы защиты. Применение свинца ограничивается низкой температурой плавления (600 К). Защитные материалы вольфрам, тантал могут использоваться в горячих зонах, в которых применение свища исключается. Использовать эти металлы для защиты промышленных реакторов нецелесообразно, так как они крайне дороги.
Кадмий хорошо поглощает нейтроны с энергией меньше 0,5 эВ. Листовой кадмий толщиной 0,1 см снижает плотность потока тепловых нейтронов в 10 9 раз. При этом возникает захватное г-излучение с энергией до 7,5 МэВ. Кадмий не обладает достаточно хорошими механическими свойствами. Поэтому чаще применяют сплав кадмия со свинцом, который наряду с хорошими защитными свойствами от нейтронного и г-излучений имеет лучшие механические свойства чем свойства чистого кадмия.
Бетон является основным материалом для защиты от излучений, если масса и размер защиты не ограничиваются другими условиями. Он состоит из заполнителей, связанных между собой цементом. В состав цемента входят окислы кальция, кремния, алюминия, железа и легкие ядра, которые интенсивно поглощают г-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений. Поглощающая способность г-излучения зависит от плотности бетона, которая может составлять 2,1-6,6 т/м 3 . Наибольшая плотность бетона при использовании заполнителя ? железного скрапа (стальных шариков, проволоки, обрезков стального лома), наименьшая ? при использовании песка и гравия. Конструкция бетонной защиты может быть монолитной (для больших реакторов) или состоять из отдельных блоков (небольших реакторов). Для снижения выхода захватного г-излучения в бетон вводят вместо заполнителя до 3% B4C.
Основным показателем защитных свойств материала по отношению к г-излучению служит линейный коэффициент ослабления плотности (мощности дозы) г-излучения. Чем выше плотность материала тем больше м (коэффициент ослабления), тем более высокими защитными свойствами обладает материал. Защитные свойства материалов улучшаются в результате введения в них тяжелого компонента (железа, бария и др.). г-излучение ослабляется за счет увеличения плотности материала.
Как защититься от гаммы излучения человеку — применение
Гамма излучение представляет собой довольно серьезную опасность для человеческого организма, да и для всего живого в общем.
Это электромагнитные волны с очень маленькой длиной и высокой скоростью распространения.
Чем же они так опасны, и каким образом можно защититься от их воздействия?
О гамме излучение
Все знают, что атомы всех веществ содержат в себе ядро и электроны, которые вращаются вокруг него. Как правило, ядро – это довольно стойкое образование, которому трудно нанести повреждения.
При этом существуют вещества, ядра которых неустойчивы, и при некотором воздействии на них происходит излучение их составляющих. Такой процесс называется радиоактивным, он имеет определенные составляющие, названные по первым буквам греческого алфавита:
- альфа,
- бета,
- гамма излучения.
Стоит отметить, что радиационный процесс подразделяется на два вида в зависимости от того, что именно в результате выделяется.
- Поток лучей с выделением частиц – альфа, бета и нейтронное;
- Излучение энергии – рентгеновское и гамма.
Гамма излучение – это поток энергии в виде фотонов. Процесс разделения атомов под воздействием радиации сопровождается образованием новых веществ. При этом атомы вновь образовавшегося продукта имеют довольно нестабильное состояние. Постепенно при взаимодействии элементарных частиц возникает восстановление равновесия. В результате происходит выброс лишней энергии в виде гаммы.

Проникающая способность такого потока лучей очень высока. Оно способно проникать через кожные покровы, ткани, одежду. Более тяжелым будет проникновение через металл. Чтобы задержать такие лучи необходима довольно толстая стена из стали или бетона. Однако длина волныγ-излучения очень мала и составляет меньше 2·10 −10 м, а ее частота находится в диапазоне 3*1019 – 3*1021 Гц.
Гамма частицами являются фотоны с довольно высокой энергией. Исследователи утверждают, что энергия гаммы излучения может превышать показатель 10 5 эВ. При этом граница между рентгеновскими и γ-лучами далеко не резкая.
Источники:
- Различные процессы в космическом пространстве,
- Распад частиц в процессе опытов и исследований,
- Переход ядра элемента из состояния с большой энергией в состояние покоя или с меньшей энергией,
- Процесс торможения заряженных частиц в среде либо движение их в магнитном поле.
Открыл гамма излучение французский физик Поль Виллар в 1900 году, проводя исследование излучения радия.
Чем опасно гамма-излучение
Гамма излучение является наиболее опасным, нежели альфа и бета.
Механизм действия:
- Гамма лучи способны проникать через кожные покровы внутрь живых клеток, в результате происходит их повреждение и дальнейшее разрушение.
- Поврежденные молекулы провоцируют ионизацию новых таких же частиц.
- В результате возникает изменение в структуре вещества. Пострадавшие частицы при этом начинают разлагаться и превращаться в токсические вещества.
- В итоге происходит образование новых клеток, но они уже с определенным дефектом и поэтому не могут полноценно работать.
Гамма излучения опасно тем, что такое взаимодействие человека с лучами не ощущается им ни в коей мере. Дело в том, что каждый орган и система человеческого организма реагирует по-разному на γ-лучи. Прежде всего, страдают клетки, способные быстро делиться.
Системы:
- Лимфатическая,
- Сердечная,
- Пищеварительная,
- Кроветворная,
- Половая.
Оказывается негативное влияние и на генетическом уровне. Кроме того, такое излучение имеет свойство накапливаться в человеческом организме. При этом в первое время оно практически не проявляется.
Где применяется гамма-излучение
Несмотря на негативное влияние, ученые нашли и положительные стороны. В настоящее время такие лучи применяются в различных сферах жизни.
Гамма излучение — применение:
- В геологических исследованиях с их помощью определяют длину скважин.
- Стерилизация различных медицинских инструментов.
- Используется для контроля внутреннего состояния различных вещей.
- Точное моделирование пути космических аппаратов.
- В растениеводстве применяется для вывода новых сортов растений из тех, что мутируют под воздействием лучей.
Излучение гамма частиц нашло свое применение в медицине. Используется оно в терапии онкологических больных. Такой метод имеет название «лучевая терапия» и основывается на воздействии лучей на быстро делящиеся клетки. В результате при правильном использовании появляется возможность уменьшить развитие патологических клеток опухоли. Однако такой метод, как правило, применяется в том случае, когда другие уже бессильны.
Отдельно стоит сказать о влияние его на мозг человека
Современные исследования позволили установить, что мозг постоянно испускает электрические импульсы. Ученые считают, что гамма излучения возникает в те моменты, когда человеку приходится работать с разной информацией одновременно. При этом небольшое количество таких волн ведет к уменьшению запоминающей способности.
Как защититься от гамма-излучения
Какая же защита существует, и что сделать, чтобы уберечься от этих вредных лучей?
В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.
- Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
- Не стоит находиться там, где расположены источники излучения.
- Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.
Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве. Однако он плавится при довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.
Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.
Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.
Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.
У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.
Излучение способно негативно влиять на организм человека, однако даже для него нашлось применение в некоторых сферах жизни.
Видео: Гамма-излучение
Гамма-излучение (гамма-лучи, γ-лучи), виды, образование, биологическая опасность и защита
Гамма-излучение (гамма-лучи, γ-лучи), виды, образование, биологическая опасность и защита.










Гамма-излучение (гамма-лучи, γ-лучи) — это вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны – менее 2⋅10 −10 м – и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.
Гамма-излучение (гамма-лучи, γ-лучи) и его виды:
Гамма-излучение (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны – менее 2⋅10 −10 м – и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.
Гамма-излучение относится к ионизирующим излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков.
Гамма-излучение (в узком смысле) – это проникающее электромагнитное излучение, возникающее при спонтанных превращениях («распаде») атомных ядер многих естественных или искусственно созданных радиоактивных элементов (радионуклидов).
В более широком смысле гамма-излучением называется любое электромагнитное излучение с квантовыми энергиями от нескольких сотен килоэлектронвольт и выше, независимо от характера их возникновения.
Название гамма-лучей происходит от деления ионизирующего излучения на альфа-излучение, бета-излучение и гамма- излучение в соответствии с их возрастающей способностью проникать в материю. Альфа- и бета-лучи состоят из заряженных частиц и поэтому взаимодействуют с материей значительно сильнее, чем незаряженные фотоны или кванты гамма-излучения. Соответственно, последние имеют значительно более высокую проникающую способность.
Альфа-излучение (α-лучи) – это поток ядер атомов гелия-4, имеющих положительный заряд. Ядро атома гелия-4 (α-частица) – 4 2He 2+ образовано двумя протонами и двумя нейтронами.
Бета-излучение (β-лучи) являют собой поток электронов – е – (частиц с отрицательным зарядом) или позитронов – p (соответственно, частиц с положительным зарядом).
Гамма-излучение (γ-лучи) представляет собой поток фотонов, имеющих высокую энергию (гамма-квантов). Энергия гамма-квантов может составлять от нескольких сотен килоэлектронвольт (кэВ) до нескольких сотен гигаэлектронвольт (ГэВ) и выше. Последнее (сверхвысокие значения энергий гамма-лучей) характерно для космических лучей. Так, очень высокоэнергетические гамма-лучи в диапазоне 100-1000 тераэлектронвольт (ТэВ) наблюдались от таких источников, как микроквазар Cygnus X-3 .
– мягкое гамма-излучение (с энергиями фотонов от нескольких сотен килоэлектронвольт до нескольких мегаэлектронвольт),
– гамма-излучение средних энергий (с энергиями фотонов от нескольких мегаэлектронвольт до десятков мегаэлектронвольт),
– гамма-излучение высоких энергий (с энергиями фотонов от нескольких десятков мегаэлектронвольт до 10 11 электронвольт),
– гамма-излучение сверхвысоких энергий (с энергиями фотонов свыше 10 11 электронвольт).
На шкале электромагнитных волн гамма-излучение граничит с жестким рентгеновским излучением. При этом четкая граница между гамма-излучением и жестким рентгеновским излучением не определена.
Гамма-излучение было открыто французским физиком Полем Вилларом в 1900 году при исследовании излучения радия. Он поместил радий-226 (в смеси с его дочерними радионуклидами) в магнитное поле. В результате компоненты излучения были разделены на три составляющие по направлению отклонения частиц в магнитном поле: излучение с положительным электрическим зарядом было названо α-лучами, с отрицательным — β-лучами, а электрически нейтральное, не отклоняющееся в магнитном поле излучение получило название γ-лучей. Впервые такую терминологию использования предложил Э. Резерфорд в начале 1903 года.
Возникновение и образование гамма-излучения:
Гамма-излучение возникает:
– при переходах между возбуждёнными состояниями атомных ядер в стабильное (при т.н. изомерном переходе);
– при взаимодействиях и распадах элементарных частиц (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.),
– при отклонении энергичных заряженных частиц в магнитных и электрических полях.
Природные источники гамма-излучения, возникающие на Земле , в основном являются результатом радиоактивного распада и вторичного излучения от атмосферных взаимодействий с частицами космических лучей. Встречаются и другие редкие природные источники такие как земные гамма-вспышки (всплески гамма-лучей, происходящие в атмосфере Земли).
Гамма излучение также возникает в космическом пространстве.
Биологический эффект и опасность гамма-излучения:
Гамма-излучение опасно для жизни и здоровья. Облучение гамма-квантами в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевую болезнь, а в некоторых случаях – и смерть.
Гамма-излучение является мутагенным и тератогенным фактором. Оно поражает ДНК клеток человека.
Свойства гамма-излучения:
– гамма-лучи, в отличие от α-лучей и β-лучей, не содержат заряженных частиц и поэтому не отклоняются электрическими и магнитными полями;
– гамма-лучи характеризуются большей проникающей способностью (по сравнению с α- и β- лучами) при равных энергиях и прочих равных условиях;
– гамма-излучение при прохождении через вещество вызывает ионизацию атомов вещества;
– гамма-излучение при прохождении через вещество вызывает различные физические эффекты: фотоэффект, комптон-эффект, эффект образования пар, ядерный фотоэффект;
– гамма-излучение, воздействуя на живой организм, вызывает хроническую и острую лучевую болезнь, а также смерть.
Фотоэффект или фотоэлектрический эффект – явление взаимодействия света или любого другого электромагнитного излучения (например, гамма-излучения) с веществом, при котором энергия фотонов передаётся электронам вещества (энергия фотона поглощается электроном оболочки атома). В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы тела) и внутренний (электроны, оставаясь в теле, изменяют в нём своё энергетическое состояние, переходят из связанного состояния в свободное без вылета наружу) фотоэффект. При внутреннем фотоэффекте как следствие поглощения фотона образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Концентрация носителей заряда приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика) или возникновению электродвижущей силы. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения.
При взаимодействии гамма-кванта с веществом происходит поглощение энергии гамма-кванта электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится положительно ионизированным).
Вероятность фотоэффекта прямо пропорциональна 5-й степени атомного номера химического элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Фотоэффект, как правило, преобладает при энергиях гамма-кванта от нескольких сотен килоэлектронвольт и менее.
Комптон-эффект – явление некогерентного рассеяния электромагнитного излучения (например, фотонов, гамма-квантов) на свободных электронах, сопровождающееся уменьшением частоты электромагнитного излучения (увеличением длины волны). Часть энергии фотонов и гамма-квантов после рассеяния передается электронам.
При взаимодействии гамма-кванта с электроном образуется новый гамма-квант, меньшей энергии, что также сопровождается высвобождением электрона и ионизацией атома.
Эффект образования (рождения) пар – явление, при котором возникают пары частица-античастица. Эффект образования (рождения) пар является обратным процессу аннигиляции,
Гамма-квант, взаимодействуя с электромагнитным полем атомного ядра, превращается в электрон и позитрон.
Рождение электрон-позитронных пар при взаимодействии гамма-кванта энергии выше 3 МэВ с электромагнитным полем ядра является преобладающим процессом взаимодействия гамма-квантов с веществом. При более низких энергиях гамма-квантов действуют в основном комптоновское рассеяние и фотоэффект. А при энергиях гамма-кванта ниже 1,022 МэВ эффект рождения пар вообще отсутствует.
Ядерный фотоэффект – явление испускания ядрами атомов нуклонов (протонов и нейтронов) при ядерных реакциях, происходящих при поглощении гамма-квантов ядрами атомов.
Ядерный фотоэффект действует при энергиях гамма-кванта выше нескольких десятков МэВ.
Применение гамма-излучения:
– в гамме-дефектоскопии: контроль качества изделий просвечиванием γ-лучами;
– в пищевой промышленности при консервировании пищевых продуктов: гамма-стерилизация для увеличения срока хранения;
– в приборах для измерения расстояний: уровнемеры, гамма-высотомеры на космических аппаратах;
– в ходе гамма-каротажа в геофизике;
Защита от гамма-излучения:
Защитой от гамма-излучения служит слой вещества (материала). Эффективность защиты зависит от характера вещества и толщины его слоя.
Ниже в таблице приводится толщина слоя половинного ослабления гамма-излучения с энергией 1 МэВ для различных материалов.
Защиту временем, то есть ограничением времени работы. Ликвидаторам аварии на Чернобыльской АЭС на выполнение конкретной работы давалось несколько минут. Промедление вызывало дополнительную дозу облучения и тяжёлые последствия.
свинец;