Защита роутера от грозы
После грозы перестал работать Wi-Fi роутер. Почему, что делать, и как защитить маршрутизатор от грозы?
С приходом весны, а затем лета, мы все радуемся теплу, дождям и даже грозам. Майские грозы. После которых появляется солнце и все зеленеет. Но сегодня мы поговорим о том, как гроза может повлиять на маршрутизатор, или модем. Если вы уже столкнулись с этой проблемой, и у вас после грозы перестал работать интернет, или вообще не работает Wi-Fi роутер, то попробуем выяснить, что можно сделать в этой ситуации. Так же расскажу, как защитить свой маршрутизатор во время грозы, чтобы он остался целым и невредимым.

Все мы хорошо знаем, что молния и гром могут вывести из строя разные электроприборы. Не редко бывают ситуации, когда во время грозы сгорают телевизоры, холодильники, компьютеры и другая техника, которая подключена к электросети. Так вот, роутеры и модемы очень чувствительны к разрядам молнии. Они могут пострадать как из-за сбоя в электросети, так и получить удар через интернет кабель, который подключен в WAN-порт. Причем, как мне кажется, чаще всего роутер получает разряд именно по сети интернет. Все потому, что эти кабеля прокладываются абы как и никак не защищены от молний.
- Как гроза влияет на роутер, или модем, и как она может им навредить.
- Что делать, если после грозы перестал работать интернет, и/или маршрутизатор.
- Как защитить маршрутизатор (модем) во время грозы.
Почему маршрутизатор боится грозы?
Как я уже писал выше, причины две. Не считая прямого попадания молнии в роутер
- Скачек напряжения в электросети. В таком случае, чаще всего сгорает блок питания роутера. Но может пострадать и сама плата. Бывают случаи, когда после такого скачка напряжения блок питания сильно нагревается, или даже плавится. Роутер может вообще перестать реагировать на подключение к электросети, или будет гореть только индикатор питания. Бывает, что постоянно горят все индикаторы. Это уже зависит от конкретной модели и говорит о каких-то аппаратных поломках.
- Возникновение и передача разряда через интернет кабель. Как правило, интернет кабель проложен из дома на дом, и никак не защищен от ударов молний. Если провайдер не позаботился о защите своего оборудования, то во время грозы оно может сильно пострадать. Малого того, страдают все маршрутизаторы и компьютеры (сетевые карты) , к которым подключен сетевой кабель. Так как по нему проходит разряд. В лучшем случае сгорает только WAN-порт, или сетевая карта на компьютере. В худшем – полностью сгорает плата маршрутизатора, или материнская плата и другие комплектующие компьютера.
Нужно заметить, что не только молния может нанести вред. Чаще всего во время грозы подымается сильный ветер, который может замкнуть линию электропередач, свалить на нее дерево и т. д. Что повлечет за собой замыкание, которое так же может вывести из строя подключенные к сети электроприборы.
Что делать, если не работает интернет и Wi-Fi роутер после грозы?
Сначала нужно определить в чем причина. Может быть проблем на стороне оборудования самого провайдера, или что-то с вашим модемом, маршрутизатором, или компьютером. А может и то и другое.
Будьте осторожны, блок питания маршрутизатора может быть горячим, или поврежденным!
Давайте рассмотрим разные варианты:
1 Включите свой маршрутизатор и обратите внимание на индикаторы. Если они вообще не горят, горит только Power (питание), или постоянно горят все индикаторы, то скорее всего роутер вышел из строя. В таком случае есть несколько вариантов:
- Проверьте, включено ли питание кнопкой на корпусе.
- Сделайте сброс настроек. Не думаю что это поможет, но попробовать можно.
- Если роутер вообще никак не реагирует, то не исключено, что сгорел только блок питания. Проверьте, не горячий ли он. Можно попробовать подключить его через другой блок питания. Главное, чтобы характеристики совпадали.
Такой адаптер можно купить на рынке, где продают радиотехнику. Или в специальных магазинчиках. - Ремонт маршрутизатора. Разумеется, придется отнести его в мастерскую. Если у вас не дорогой роутер, то ремонт зачастую не оправдан. Понятно, что придется заплатить за ремонт, но не понятно сколько он потом проработает.
- Покупка нового маршрутизатора. Чаще всего подобного рода поломки заканчиваются покупкой нового устройства. Здесь может пригодится статья с советами по выбору роутера.
Я не рассматривал случай, когда роутер явно сгорел. Начал плавится корпус самого устройства, или блока питания, пошел дымок и т. д. Там, как мне кажется, причина и решения понятны и без моих советов.
2 Роутер работает, Wi-Fi сеть есть, но подключения к интернету нет. «Без доступа к интернету». Чаще всего это бывает по двум причинам:
- Проблемы на стороне провайдера. Возможно пострадало какое-то оборудование, или провайдер временно отключил интернет, чтобы избежать возможных проблем. Лучший способ это выяснить – подключить интернет напрямую к компьютеру. Без маршрутизатора. Если напрямую интернет работает, значит что-то с вашим роутером. Если не работает, то можно позвонить в поддержку провайдера и уточнить в чем проблема. Или просто немного подождать.
В таком случае индикатор интернета (WAN) будет просто гореть зеленым цветом (а должен мигать) , или будет гореть оранжевым цветом.
Можно так же проверить настройки подключения к интернету в панели управления маршрутизатором. Возможно, они слетели. - Сгорел WAN-порт на роутере. Это очень частый случай. Если сгорел WAN, то при подключении кабеля индикатор WAN скорее всего не будет никак реагировать. Не будет гореть.
Решение: На некоторых маршрутизаторах можно переназначить WAN порт. Использовать один из LAN портов в роли WAN. Все зависит от конкретной модели. Но чаще всего для получения такого функционала приходится прошивать маршрутизатор альтернативной прошивкой OpenWRT, или DD-WRT. На которых есть такая функция.
Вот такие поломки. Первым делом определяйте причину, по которой перестал работать интернет после грозы. Проблемы у провайдера, или с вашим оборудованием. Если у вас что-то, то смотрите как работает модем, или роутер. Какие индикаторы горят. Проверьте работу WAN-порта.
Как защитить роутер или модем во время грозы?
Несколько советов на эту тему:
- Как только за окном начинают собираться тучи и запахло грозой, отключите свой маршрутизатор от электросети, отключите кабель из WAN-порта и спрячьте его в шкаф :). Я серьезно. Лучший способ – полностью отключить маршрутизатор. Не забывайте отключать интернет кабель. Более того, я советую отключить компьютеры и другую технику. Именно отключить их из розетки.
- Подключайте маршрутизатор через обычный сетевой фильтр. В большинстве случаев он действительно помогает. Стоит такой фильтр не дорого, а эффект от него может быть не плохой.
- Еще лучше подключать роутер через стабилизатор напряжения. Понимаю, что это дополнительные расходы, но если у вас проблемы с напряжением в электросети, или вы живете в таком месте, куда любят прилетать молнии, то покупка стабилизатора может быть единственным решением. Хотя, если сильный разряд, то горят и стабилизаторы.
Пишите в комментариях, как вы защищаете свою технику от таких природных явлений. И приходилось ли вам сталкиваться с проблемами в работе роутера, или интернета после дождика с красивыми молниями.
Защита роутера от грозы
Для того чтобы обезопасить аппаратуру от наведенных грозовыми разрядами импульсов, подвод электросети к телекоммуникационным и охранным устройствам, а также к системам видеонаблюдения, где она не может быть отключена по условиям эксплуатации, выполняют в соответствии с требованиями. И, как правило, используют источники бесперебойного питания со встроенными сетевыми защитными устройствами.
Но что делать тем, кто, например, оставляет на даче включенную аппаратуру, извещающую владельца о проникновении на контролируемую территорию посторонних лиц. Для того чтобы снизить вероятность повреждения охранного устройства при грозе, блок его питания нужно дополнить некоторыми элементами, резко ослабляющими импульсы высокого напряжения в сети, которые будем в дальнейшем называть сетевыми помехами.
Эффективность подавления таких помех одними и теми же элементами различна Отсюда следует первая особенность — защитное устройство должно быть многоступенчатым.
Вторая особенность конструирования защитного устройства — необходимость наличия в нем проводника с нулевым потенциалом, “землей”. Это условие легко соблюсти в современных квартирах где электропроводка выполнена по трехпроводной схеме (”фаза” (L). “ноль” (N), “защитная земля” (РЕ)) . Если питающая электросеть без защитного заземления, то придется либо самостоятельно создать контур заземления, либо смириться с тем, что подавление помех будет недостаточно эффективным. Удовлетворительно, если помехи с фазного провода отводят на нулевой, хорошо — с фазного провода и отдельно с нулевого провода на заземляющий отлично — с фазного провода отдельно на нулевой и на заземляющий, а также с нулевого на заземляющий.
Для ослабления продолжительных мощных помех порождаемых грозовыми разрядами, в качестве поглотителей энергии импульса применяют вакуумные и газонаполненные разрядники. Как показывает статистика, доля таких помех составляет примерно 20 %. Остальные 80 % приходятся на кратковременные. которые эффективно подавляются параллельными защищаемой цепи конденсаторами и последовательными заградительными элементами — дросселями. Применяют также комбинированный метод, когда мощные помехи ослабляются параллельно включенными поглощающими элементами (ограничителями напряжения), а маломощные — последовательно.
Газонаполненные разрядники могут быть применены в двух- и трехэлектродном исполнении в зависимости от конструкции защитного устройства — двухпроводной или трехпроводной. По надежности функционирования и максимальному импульсному току такой ограничитель напряжения превосходит все остальные (рис. 1). Это цилиндрический баллон с разрядными электродами в его торцах, наполненный инертным газом. Недостатком разрядника является его меньшее быстродействие по сравнению с другими защитными элементами. что обусловлено необходимостью некоторого интервала времени для ионизации газа. 
Рассмотрим трехэлектродный разрядник Т23-А230Х диаметром 8 и длиной 10 мм Несмотря на столь малые размеры, этот защитный элемент допускает пиковый разрядный ток в многократных одиночных импульсах 8/20 мкс (фронт/спад) до 20 кА или в течение 1 с выдерживает переменный разрядный ток 10 А частотой 50 Гц. Такая эффективность защиты обеспечена особой конструкцией разрядника, которую иллюстрирует рис 1. В исходном состоянии его сопротивление превышает 10 Ом. Когда напряжение в разрядном промежутке создает напряженность электрического поля, способную вызвать ионизацию газа, происходит электрический разряд, в результате чего сопротивление разрядника резко снижается. По завершении импульса инертный газ восстанавливает свои изоляционные свойства. Напряжение пробоя разрядного промежутка определяется как размерами и конструкцией электродов, так и свойствами заполняющего газа — составом и давлением. Специальное компаундное покрытие электродов и керамического изолятора между ними активирует их эмиссионную способность. Кольцевая форма центрального электрода позволяет максимально использовать поверхность торцевых электродов 1 и 2, обеспечивая большой разрядный ток без эрозии токонесущих поверхностей.
Чтобы компенсировать запаздывание в срабатывании от помехи с крутым фронтом (1 кВ/мкс и более), разрядники в многоступенчатых защитных устройствах, как правило, дополняют варисторами и защитными диодами, которые отводят на себя часть энергии импульсной помехи в начальный момент ее появления в электрической сети.
Металлооксидный варистор аналогичен симметричному стабилитрону — при превышении некоторого порогового значения прикладываемого напряжения сопротивление элемента резко падает. Классификационное напряжение варистора должно превышать максимальную амплитуду напряжения сети не менее чем на 5 %. Например, максимально допустимому повышению сетевого напряжения 220 В на 20 % (264 В) соответствует амплитуда 374 В. Следовательно, классификационное напряжение варистора должно быть не менее 393 В. Если использовать варистор. как во многих промышленно изготавливаемых защитных устройствах, со стандартным классификационным напряжением 390 В, в силу допускаемой технологической погрешности данного параметра существует риск его повреждения. Поэтому пунше его использовать с несколько большим классификационным напряжением.
Варистор характеризуется также некоторой предельной энергией импульса, которую он может поглотить без разрушения. Такая характеристика обладает свойством накопления. Это значит, что прибор без ухудшения параметров способен поглотить одиночный импульс с некоторой максимально допустимой энергией или некоторое число импульсов с меньшей энергией. Например, металлооксидный варистор диаметром 20 мм поглощает импульс с максимально допустимой энергией 410 Дж либо 10 импульсов с энергией 40 Дж. После выработки варистором заложенного ресурса его классификационное напряжение несколько увеличится, а затем с каждым последующим импульсом начнет резко снижаться, в результате варистор “выгорит”. Поэтому он подлежит замене при малейшем внешнем проявлении деградации (потемнении лакокрасочного покрытия). Необходимость контроля технического состояния варистора. находящегося внутри закрытого сетевого фильтра, является его недостатком.
Защитные диоды (Transient Voltage Suppressor), подобно стабилитронам, крайне быстро становятся проводящими при увеличении приложенного напряжения сверх напряжения открывания. Время реакции такого прибора, особенно безвыводного, составляет всего лишь несколько пикосекунд. Конечно, индуктивность выводов и подводящих проводов снижает быстродействие диода, но тем не менее оно остается самым высоким среди используемых ограничителей напряжения. Существуют как однополярные защитные диоды, так и с симметричной вольт-амперной характеристикой . что позволяет их использовать без дополнительных выпрямляющих диодов в цепях переменного тока. При очень большом токе, в отличие от газонаполненного разрядника, происходящий в защитном диоде электрический пробой становится необратимым. Такой элемент подлежит замене.
Промышленно изготавливаемые устройства защиты от высоковольтных импульсов в электросети как в нашей стране. так и за рубежом должны соответствовать требованиям международных стандартов, утверждаемых Международной электротехнической комиссией (МЭК), и по общепринятой терминологии подразделяются на I, II и III класс защиты. Устройства I класса предназначены для защиты электросети на вводе в здание перед счетчиком электрической энергии. Основными элементами таких устройств являются вакуумные и газонаполненные разрядники, способные нейтрализовать мощные грозовые разряды до 150 кА в импульсе, что соответствует прямому попаданию молнии с учетом растекания тока по подвергнувшейся электрическому удару поверхности.
Устройства II класса ослабляют импульсные помехи в этажных и цеховых распределительных щитах. Наиболее часто используемый защитный элемент в таких устройствах — варистор.
Устройства III класса предназначены для защиты отдельных устройств с потребляемым током не более 16 А. Выполняют их, как правило, на защитных диодах.
Может ли гроза вывести из строя роутер?





На отечественном рынке представлен большой выбор модемов, которые совместимы с популярным мобильным оператором. Поэтому сегодня…
Мобильный интернет выручает пользователя в любом месте – на отдыхе или в загородном поселке. Для…
Некачественный сигнал – распространенное явление. Решить такую проблему помогают репитеры (усилители) сигнала – устройства, которые…
Сейчас достаточно широко применяются цифровые технологии, работающие на основе расширенного спектра. В отличие от систем…
Общеизвестно, что гроза может вывести из строя часть бытовых электроприборов, подключенных к сети. И если с десяток лет назад, список устройств ограничивался телевизорами, холодильниками и компьютерами, то в эру высоких технологий он пополнился WI-FI роутерами, обеспечивающими доступ к сети для мобильных устройств. Но почему сетевое оборудование уязвимо к разрядам молнии? С какими поломками приходится сталкиваться «рядовому» пользователю и как обезопасить девайс? Эксперты интернет-магазина Center 5G решили ответить на эти вопросы, поделившись важной, полезной, интересной и актуальной информацией со всеми читателями нашего блога!

Чем опасна гроза для маршрутизатора?
Помимо прямого попадания молнии в роутер, гроза может спровоцировать:
- Скачок напряжения в электросети с последующей поломкой блока питания. Реже, неисправности являются следствием повреждения платы устройства.
- Передачу разряда через интернет-кабель, что тянет за собой короткое замыкание, передающееся к остальным устройствам, подключенным к роутеру «по проводу».
При этом стоит отметить, что помимо молнии, во время грозы наблюдаются сильные порывы ветра, способные оборвать или замкнуть линию электропередачи.
Поломки и способы их устранения
Для начала следует определить характер поломки. Ведь далеко не всегда неисправность кроется именно в вашем маршрутизаторе: нередко, проблемы возникают из-за повреждения оборудования провайдера. Чтобы установить первопричину, достаточно:
- Включить роутер и обратить внимание на световые индикаторы. Если ни один из них не горит, либо постоянно горят все лампочки, вероятнее всего ваше оборудование было повреждено. При чем нередко, резкий разряд молнии «сбивает» программные настройки. Вернуть их можно посредством полного сброса настроек (кнопка RESET или комбинация клавиш на обратной стороне девайса). Кроме того, стоит проверить блок питания: если маршрутизатор не подает признаков жизни, можно попробовать запитать его через другой кабель;
- Проверить наличие подключения на компьютере. Если роутер работает и раздает вайфай, но уведомление показывает отсутствие интернета, попробуйте подключить кабель провайдера напрямую к компьютеру, без маршрутизатора. Если интернет «завелся», вероятнее всего проблема в оборудовании, в противном случае следует сообщить поставщику услуг о возможной поломке. Кроме того, можно попробовать «переназначить» функцию WAN на один из LAN-портов устройства.

При этом эксперты напоминают, что «предупредить» проблему – гораздо дешевле, чем устранять ее. Поэтому при первых признаках грозы необходимо:
- Отключить маршрутизатор из сети, либо вынуть WAN-кабель из порта;
- Использовать сетевой фильтр, защищающий от перегрузок;
- Приобрести стабилизатор напряжения, «перегорающий» вместо домашней техники.
При этом стоит отметить, что в случае плавления корпуса устройства или перегорания внутренних плат, ремонт маршрутизатора может обойтись гораздо дороже, чем покупка нового аналогичного девайса.
Как защитить домашнюю сеть во время грозы
Строителям локальных и домашних сетей безусловно знакомо ощущение, когда запущенная после долгих трудов сеть работает. день-два, а потом — приходится лезть на чердак и менять сгоревший хаб. Грозы — вообще бич сетей. В большой сети ни одна гроза не проходит без потерь.
Намаявшись со сгоревшими хабами, человек, само собой, приходит к вопросу: неужели ничего нельзя сделать? Конечно же можно — и нужно! Необходимо, во первых, правильно спланировать и выполнить кабельную разводку, а во-вторых — использовать устройства грозозащиты (известные также как нетпротекторы).
Такие устройства можно купить. Из имеющихся на рынке можно отметить два класса: «брендовые» и «самопальные». Класс брендовых в основном представлен изделиями фирмы APC — это различные модели под общим названием ProtectNet. Эти устройства отличает довольно высокая цена — и довольно низкая надежность (почему — см. ниже). Что касается самопальных устройств, выпускаемых несколькими ООО и ПБОЮЛ, то все они примерно одинаковы. Их собственная надежность выше, чем у устройств APC, но защитные свойства примерно те же.
Такие устройства можно также изготовить самому. Как — читайте в этой статье.
Прежде — немного рассуждений. Каков диагноз при сгорании хаба? Электрический пробой. Каким образом «лишнее» электричество могло попасть в хаб? Через разъемы BNC, UTP и питания. Механизм образования этого электричества? Накопление статических зарядов на воздушной линии, наведенная ЭДС от высоковольтных линий, наведенная ЭДС от грозового разряда. Способ защиты? Отвод лишнего электричества в землю.
Сразу замечу, что никакое из рассматриваемых в данной статье устройств не способно защитить от прямого удара молнии. Однако, мне пока неизвестны случаи прямых ударов молний в провода локальных сетей.
Изготовить защиту для линии на витой паре можно по следующей схеме:

К расположенному слева разъему подключается линия, к расположенному справа — хаб. Разрядники — газовые, на напряжение 300В (я использовал CSG-G301N22). Расстояние от устройства до хаба — минимально возможное.
Принцип работы понятен из схемы. Многофазный диодный мост с защитным диодом в диагонали выполняет функции «выравнивателя» потенциалов, ограничивая максимальную разницу потенциалов любых двух проводов на уровне порядка 10 В. Потенциал, превышающий 300 В относительно земли, гасится разрядником.
Практически все имеющиеся сейчас на рынке устройства выполнены по аналогичной схеме, но есть и важные отличия. Фирма APC использует вместо газовых разрядников так называемые полупроводниковые псевдоискровые разрядники. Эти элементы крайне дешевы, однако их надежность не выдерживает никакой критики. Защитить от статики они способны, но от наведенного электричества при близком ударе молнии сразу выгорают. В грозозащитах, встроенных в ИБП производства APC, использовано другое решение — воздушный искровой промежуток. Такая схема, наоборот, срабатывает только при очень большом наведенном напряжении — когда спасать как правило уже нечего.
Умельцы в различных ООО подметили эту особенность и решили проблему по-своему: практически во всех устройствах российского производства разрядники просто отсутствуют. Вместо них используется «жесткое» (с различными вариациями) соединение с землей. Преимущества такого решения очевидны, недостатки — увы, тоже. При достаточно большой разнице потенциалов между точками заземления с разных концов линии через кабели и устройства начинает течь уравнивающий ток, который может достигать огромных величин и выжигать все на своем пути.
Параметры схемы на рис.1. можно улучшить:

Здесь каждый провод соединен с землей отдельным разрядником, чем достигается гораздо большее быстродействие защиты (разрядник срабатывает на 3 порядка быстрее чем диод 1N4007 и на порядок быстрее защитного диода). Недостаток этой схемы — большое количество относительно дорогостоящих (2-3 USD) разрядников. Схему можно (но нежелательно) упростить, используя только по одному разряднику на каждой паре (например, только с контактов 1 и 3). В любом случае, необходимо использовать специализированные разрядники. Использование вместо разрядников неоновых лампочек или стартеров от ламп дневного света (как рекомендуют некоторые) возможно, но следует учитывать что они обладают гораздо меньшим быстродействием, большим сопротивлением при пробое и меньшей допустимой энергией пробоя.
Важный момент, о котором забывают практически все производители нетпротектов: защита хаба по питанию. Для обычного хаба, питающегося постоянным напряжением величиной 7.5 В, защиту можно выполнить по следующей схеме:

Как и в случае с защитой линии на витой паре, это устройство следует располагать как можно ближе к хабу.
Для хабов, имеющих встроенный сетевой блок питания, дополнительная защита не требуется. Единственное условие — наличие надежного защитного заземления, подключенного к среднему контакту сетевой вилки.
Если при протяжке воздушной линии используется проводящая траверса (обычно — полевик), ее необходимо заземлить. Внимание — заземлять траверсу надо только с одного конца (тут мне приходится спорить с авторами других известных в Интернете статей на эту тему).
К сожалению, даже в новостройках при проведении электрической сети далеко не все и не всегда руководствуются требованиями Правил Устройства Электроустановок. Прямо скажем, никто. Я видел дом (современная кирпичная 9-ти этажка, введенная в эксплуатацию, кстати, уже после появления 7-го издания ПУЭ), в котором каждый подъезд запитывается алюминиевым проводом сечением 2.5 кв.мм. Соответственно, если «заземлить» траверсу в таком доме и в доме с нормальным заземлением, через вашу траверсу будет питаться весь дом! 🙂
Аналогично можно выполнить и защиту линии на основе коаксиального кабеля. Наиболее оптимальное решение: выравнивающий мост подключается к оплетке и средней жиле. В такой схеме понадобится 2 разрядника — с оплетки и жилы на землю. Заземлять оплетку коаксиального кабеля при создании воздушной линии между зданиями я не рекомендую.
В заключение — несколько слов касательно эффективности и необходимости описанных устройств. В ходе тестовой проверки устройства включались в воздушную линию на UTP длиной порядка 60 м. При подключении линии (второй конец — свободный!) наблюдается яркое свечение в разрядниках. После окончательного монтажа линии разрядники «подмигивают» примерно с интервалом в 20-50 секунд, т.е. не самая длинная линия в спокойную погоду набирает 300 В статического потенциала менее чем за минуту!
Не секрет, что в местах установки хабов далеко не всегда имеется розетка сети 220В. Поэтому приходится либо, скрепя сердце, издеваться над топологией сети ради размещения хабов в более подходящих местах, либо думать о подведении питания издалека.
Столкнувшись с такой проблемой, «ух-мастера» иногда решают ее просто — подводят 220В, используя свободные пары в кабеле (UTP), или используя коаксиал RG-58. Разумеется, такое «решение» никак нельзя считать приемлемым, так как ни о какой электро- и пожаробезопасности в данном случае не может быть и речи. Даже если пожар случится совсем по другой причине, автор подобной проводки гарантированно будет первым кандидатом в виновные.
Более грамотным выглядит проведение сети 220В, используя соответствующий кабель (медный многожильный, в двойной изоляции, не менее 0.75 кв.мм.). При качественном монтаже это вполне можно считать нормальным вариантом; однако, при размещении хаба в неудачной с пожарной точки зрения зоне — например, на чердаке дома с деревянными стропилами — придется уделить внимание размещению и изоляции розетки. Вдобавок, местные электрики очень косо смотрят на любые «чужеродные» линии 220В.
В некоторых случаях (например, хаб или свитч со встроенным блоком питания) проведения сети 220В не избежать. Однако в большинстве вариантов устанавливаются хабы с внешним блоком питания, выходное напряжение которого как правило равно 7.5В. К такому хабу можно подвести питание «по низкому» напряжению. Рассмотрим возможные варианты:
Типовому хабу требуется 7.5В постоянного тока. Рабочий ток хаба как правило несколько меньше 1А. Напряжение 7.5В абсолютно безопасно с точки зрения пробоя изоляции проводов, однако подвести его «издалека» так просто не удастся. Дело в том, что дешевые хабы очень критичны к величине и особенно чистоте питания, а на больших пролетах неизбежно падение напряжения, как и появление наводок.
Решение состоит в установке стабилизатора на величину 7.5-8В непосредственно около хаба, при этом линейное напряжение питания можно увеличить.

Напряжение источника выбрано равным 13.2В (12-14В) исходя из его широкой распространенности (напряжение в бортовой сети автомобиля). Ассортимент имеющихся в продаже блоков питания на это напряжение очень широк. Разумеется, от одного блока питания можно питать несколько хабов, протянув к ним линии и оборудовав каждый из них своим стабилизатором по схеме на рис.2.1. При этом рабочий ток блока питания следует рассчитывать, исходя из 2А на каждый хаб. При количестве хабов более 10 можно считать по 1.5А/хаб. ИМС стабилизатора следует оборудовать радиатором.
Логическим продолжением данной схемы является схема на рис. 2.2.

Здесь стабилизатор дополнен выпрямителем, что позволяет использовать переменное напряжение и сэкономить на стоимости блока питания, заменив его трансформатором. Рабочий ток трансформатора также следует рассчитывать, исходя из 1.5 — 2А на хаб (мы исходим из предположения, что используется хабы с номинальным током 1А). В качестве трансформатора удачно подходят приборы серии ТН (накальные) с соединенными последовательно (или последовательно-параллельно) обмотками, для получения напряжения 12.6В.
Обе рассмотренные схемы содержат элементы защиты от импульсных помех по питанию, от статики, от перенапряжения и переполюсовки.
В качестве питающей линии можно использовать незадействованные пары в UTP. Проводники в них следует соединить попарно параллельно (синий+белосиний, коричневый+белокоричневый). Через UTP категории 5, соединенной таким образом, можно запитать до 3-х хабов. Такое подключение без проблем пройдет при скорости в линии 10Мб/с; на 100Мб/с «распарка» кабеля нежелательна, хотя как правило при аккуратном монтаже все работает без проблем.
Типовая топология в данном случае может выглядеть так: входящая в дом линия подключается к свитчу, расположенному недалеко от розетки 220В. От этой же розетки питается трансформатор. От свитча (и трансформатора) отходят линии UTP к подъездным (этажным) хабам, при этом на каждый хаб нужна только одна нитка UTP.
Также появляется возможность создания длинного «пролета», состоящего из хабов или свитчей, с подключением к питанию только в одном месте.
При использовании в качестве базового варианта по рис.2.2. (с переменным током в линии) удаленно можно подключать и хабы со встроенным блоком питания. Такой хаб подключается с помощью еще одного трансформатора (например, серии ТН), включенного на «повышение».
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Использование электротехники в грозу и как защитить от молнии?
Еще из советских времен сохранилась традиция — в грозу выключать все из розеток. Но, что делать с холодильником, ведь грозовая погода может продлиться несколько часов, а он за это время потечет? Или, если у Вас срочный проект и Вы не можете выключить компьютер? Или, если Вас нет дома?
Почему электричеством нельзя пользоваться в грозу — или все-таки можно?
Существует сотни причин не выключать технику. Многие так и делают с надеждой, что молния попадает в ЛЭП раз на 20 лет, и на этот раз пронесет. Но, зачем играть в лотерею, если можно защититься и спокойно пользоваться электричеством. Давайте разберемся, чего именно стоит опасаться во время грозы.

Миф о том, что электротехника — грозовой магнит
Как Вы уже поняли, электроприборы не притягивают молнии. Этот миф очень похож на то, что якобы нельзя в грозовую погоду пользоваться мобильными телефонами — это не правда. Такое утверждение появилось после того, как в 2006 году в «Британском медицинском журнале» bmj.com была опубликована статья о том, что мобильный телефон усугубляет последствия удара молнии. Но, в тексте нет ни слова о том, что мобильники притягивают грозу.
Интересно: в статье говорилось о металлических телефонах. Были зафиксированы случаи, когда после удара молнии металлический корпус телефона раскалялся и наносил серьезные ожоги. Но, статья вышла в 2006 году, а сейчас корпусы смартфонов делают преимущественно из пластика, как у Samsung и стекла, как у iPhone. Информация из статьи уже утратила актуальность.
После выхода статьи, газеты начали массово печатать заголовки типа «Мобильные телефоны опасны во время грозы». Везде говорилось, что жертвы во время удара говорили по телефону или то, что он у них был при себе. Тема вызвала резонанс и начала еще больше раскручиваться. Так появился на свет этот популярный миф. Но, могут ли в действительности электроприборы притягивать грозовые разряды?
Как электроприборы влияют на грозу
На самом деле, выключенная или включенная бытовая электротехника никак не влияет на грозу. Это связано со спецификой возникновения данного природного явления. В облаках скапливается статический заряд с силой в полмиллиона ампер и напряжением в миллионы вольт. Чтобы разрядить такую энергию необходимо нейтральное поле, способное пропустить ток сверхвысокой мощности.
Поглотить такую энергию может только земля. Природный барьер между плюсовой тучей и минусовой землей — воздух, который сам по себе диэлектрик. И как только скопившийся заряд набирает достаточно мощности, чтобы пробить эту природную изоляцию — появляется молния. Чаще всего электрический разряд идет по дождевым каплям — пути наименьшего сопротивления, а на земле нацеливается в высокие объекты: железные трубы, мокрые деревья, молниеотводы и т.д. Мизерное электромагнитное поле смартфона и или другой техники никак не может повлиять на заряд такой мощности.
Техника не притягивает грозовые разряды, но она может пострадать от них. Чтобы этого не случилось, ее нужно защитить.
Как защитить технику от грозовой погоды?
Вопреки популярному заблуждению молнии никогда не бьют в сами провода высоковольтных линий. Они попадают в мокрые от дождя столбы и по ним проходят в землю. Но, проходящий разряд сверхвысокой мощности создает сильное электромагнитное поле. Из-за него в ЛЭП возникает импульс высокой мощности.
Чем опасен импульсный разряд?
Электронный импульс двигается по проводнику, заходит в домашнюю сеть и через розетку попадает в электроприборы. Из-за этого выгорает вся электроника с микросхемами. Импульсный разряд сжигает полупроводниковые элементы (резисторы, тиристоры и т.д.). Как правило, электроника после такого уже не пригодна к ремонту.
Для нагревательных электроприборов сверхмощный электрический импульс не опасен, так как он длится меньше секунды и за это время не успевает нагреть металл до опасных температур.
Электрический импульс от грозы может прийти в дом не только по ЛЭП, но и по телефонному или интернет-кабелю. В таком случае выгорят все приборы с проводниковым подключением к интернету.
Пожар из-за такого разряда, вряд ли возникнет, но вреда от этого немало. За долю секунды сверхток успевает сжечь электронные платы. Чтобы был очаг возгорания, на плату нужно нарочно налить бензина. Такой случай может быть лишь раз на тысячу. Тем не менее электронная техника стоит недешево и требует защиты.
Как защититься от грозового импульса?
Для защиты нужно купить устройство защиты от импульсных перенапряжений (УЗИП) или, как его еще называют, разрядник. Чтобы заряд полностью рассеялся, он должен пройти через несколько степеней заземленной защиты:
- УЗИП на столбе высоковольтных линий — проводит ток свыше 100 кА;
- Класс 1 (В) — проводит от 50 кА до 100 кА, устанавливается на предприятиях, административных зданиях;
- Класс 2 (С) — снимает от 15 кА до 50 кА;
- Класс 3 (D) — проводит от 8 кА до 45 кА.
В квартирах часто ставят класс D, а в частных домах С и D один за другим — для большей эффективности. Невозможно предвидеть в какой именно столб ЛЭП попадет молния. Например, если это случится неподалеку, с большой вероятностью класс D не защитит сеть.
Класс B ставят на вводе в многоэтажки, куда заводят провода с сечением 25 мм2 и больше. Более тонкая жила не может пропустить столь мощный импульс, и ставить на нее разрядник высокого класса нет смысла.
Бытовой УЗИП состоит из химического полупроводникового состава, пропускающего сверхвысокие токи. С одной стороны к нему подключен провод, а с другой — земля. Как только по проводнику протекает импульс сверхвысокой мощности, химический состав пропускает его через себя в землю.
Чтобы понять, что грозозащита сработала, многие производители делают состав таким, что меняет цвет при разряде. Это не значит, что разрядник одноразовый. Некоторые бренды заявляют о том, что их модели рассчитаны на 2-3, а то и больше срабатываний.
Если разрядник недорогой, лучше его заменить после первого срабатывания и не надеяться на второй раз. Тем более стоимость бюджетных аналогов начинается от 350 грн.
Куда ставить защиту?
Часто поставить один разрядник на электросеть — мало. Это не единственный путь сверхвысокого импульсного разряда в вашу сеть. Есть еще компьютерный и телефонный кабель, их тоже нужно защитить.
Часто интернет-кабель провайдера выводится на столбы ЛЭП. И если вдруг молния ударит в этот столб возникнет сразу два импульса, которые одновременно потекут в дом по электросети и медножильному сетевому кабелю.
Если, у Вас был установлен УЗИП на вводе и он снял один из токовых импульсов, то второй сожжет всю электронику на своем пути. Сгорит роутер и все компьютеры подключенные к интернету по кабелю, даже если они в этот момент были выключены. Поэтому, на интернет-кабель нужен специальный грозоразрядник.
В многоэтажках нет необходимости его ставить, так как провайдеры сами защищают собственную технику. Каждый интернет-узел на этаже уже оборудован средствами грозозащиты. Но, из каждого правила бывают исключения, поэтому уточните у провайдера, стоит ли Вам ставить дополнительную защиту.
Грозы нужно опасаться, если интернет проведен медной витой парой, оптический кабель — ток не проводит.
Аналогичная ситуация с телефонными линиями. Они независимы от электросетевых магистралей и пропускают сверхвысокие импульсы по собственному кабелю. Если не будет защиты и случится разряд, сгорят все телефонные аппараты. В частном доме последствия не такие и страшные — сгорит один или два телефона. Но, например, в офисе выгорят все телефонные аппараты и факсы. А это убытков на тысячи гривен. Дешевле поставить разрядник стоимостью несколько сотен.
В многоквартирных домах оператор должен защищать собственное оборудование от грозы, но в украинских реалиях это не всегда так. Например, в линиях Укртелекома — это лотерея, защита стоит через раз. Не редкость случаи, когда из-за отсутствия грозозащиты в этого оператора, выгорала бытовая техника.
Так называемые «польские антенны» постепенно уходят в прошлое. Тем не менее ими до сих пор пользуются в украинских селах. Приемники сигнала размещают на 10-метровых мачтах, чаще всего металлических, а коаксиальный кабель от них заводят в здание.
Такие антенны — лучшая мишень для молний. После попадания, токовой импульс протекает в дом и «убивает» телевизор. Как и другая техника, после этого он уже не подлежит ремонту. Чтобы не покупать новый «ящик» после каждой грозы, лучше поставить грозоразрядник на антенный кабель.
Как защитить сеть с электрогенератором?
Предположим, что у Вас стоит генератор, на случай перебоев с электроснабжением или по другой причине. Когда пропадает свет, резервный источник включается автоматически через систему АВР. Куда в таком случае поставить разрядник?
Если генератор небольшой на 3-5 кВт и стоит в помещении, например, где-нибудь в сарае, можно просто установить грозоразрядник на магистральную линию перед АВР. Вероятность, что молния попадет в резервный источник и создаст импульс — мизерная, скорее она ударит в сам сарай и спровоцирует пожар. Поэтому защищать резервную линию, в данном случае — нет смысла.
Другая ситуация, если генератор установлен на улице. Если нет громоотвода, молния может попасть в него, чем вероятно выведет из строя. Но, это не все убытки, ведь по резервному кабелю протечет сверхвысокий ток и выведет из строя систему АВР.
Если во время удара сеть питалась с резервного источника, то грозовой разряд попадет в нее и уничтожит электронику включенную в розетки.
Чтобы этого не произошло, лучше поставить дополнительный разрядник между электрогенератором и АВР. Так Вы защитите автоматику. Самый дешевый УЗИП стоит 350 грн, а цена АВР начинается от 2000 грн, поэтому есть смысл ее защищать. (источник — интернет магазин электротехники Аксиом-Плюс)
Ставить один грозоразрядник после АВР — неправильно, потому что ее «убьет» разряд из городской сети. Если поставить грозозащиту перед АВР на основной линии, то вся электроника выйдет из строя через резервную линию. Поэтому в данной ситуации наиболее адекватный вариант поставить два грозоразрядника перед АВР — на резерв и городскую сеть.
Как защитить дом от грозы?
Попадание молний в здания сопровождается пожарами. Последнее нашумевшее происшествие случилось 22 августа 2017 года, когда удар пришелся на здание апелляционного суда Харьковской области. Возгорание началось с крыши, затем огонь дошел до второго и первого этажа. Общая площадь пожара составила 1500 кв.м. И это далеко не единственный такой случай. Из-за грозы часто случаются пожары и в частных домохозяйствах.
Вероятность попадания зависит от многих факторов: высоты расположения, размещению поблизости более высоких зданий и т.д. Если дом стоит на холме, вероятность выше, чем если бы он стоял где-то внизу. Также, если рядом расположены более высокие здания, вероятно что молния попадет именно в них.
Но, даже если здание стоит в низине, вероятность попадания все равно остается. Это может быть вызвано стечением обстоятельств. Например, в то время, как пошел дождь, грозовое облако сформировалось как раз над Вашим домом. Удар придется на крышу или ближайшее высокое дерево. Чтобы не случилось пожара, поставьте громоотвод.
Это длинная мачта с заземлением, установленная на самой высокой точке здания. Через нее электричество отводится в землю, где закопанный металлический куб — такая конструкция лучше проводит сверхвысокие токи. Заземление громоотвода должно быть независимым и никак не соприкасаться с заземлением сети. Лучше их развести на максимально возможную дистанцию.
Если заземление громоотвода и электросети соприкоснется, то импульсный разряд попадет в дом через розетки. Грозовому току все равно, по чему течь — фазе, нейтрали или заземлению.
При планировании громоотвода, отведите наружные сетевые провода подальше от контура его заземления, иначе удар молнии спровоцирует импульс в близлежащих проводниках.
Пользуйтесь электричеством в любую погоду
Если поставите модульные грозоразрядники в щиток, Ваша техника будет в безопасности. Так Вы сможете пользоваться интернетом на компьютере даже в грозовую погоду и не бояться, что «сгорит» вся электротехника. Минимальный комплект для частного дома стоит около 1000 грн. (может дороже, в зависимости от производителя). В него входят:
- грозоразрядники класса C и D;
- грозоразрядники для интернет-кабеля;
- грозозащита для телефонной линии.
Данного набора хватит на 10-15 лет, а может и больше, если Ваш дом не расположен в эпицентре формирования грозовых туч. Этого достаточно, чтобы не дергаться от каждого мерцания в дождливую погоду и не бегать, выдергивая все из розеток при звучании грома.
Такой адаптер можно купить на рынке, где продают радиотехнику. Или в специальных магазинчиках.
Можно так же проверить настройки подключения к интернету в панели управления маршрутизатором. Возможно, они слетели.
Решение: На некоторых маршрутизаторах можно переназначить WAN порт. Использовать один из LAN портов в роли WAN. Все зависит от конкретной модели. Но чаще всего для получения такого функционала приходится прошивать маршрутизатор альтернативной прошивкой OpenWRT, или DD-WRT. На которых есть такая функция.